Nov 27, 2017 East-Asia ALMA Science Workshop 2017 @KASI/Korea

On the disappearance of a cold molecular torus around the low-luminosity active galactic nucleus of NGC 1097

→ T.Izumi et al. 2017, ApJL, 845, L5

Takuma Izumi (NAOJ Fellow) takuma.izumi@nao.ac.jp

SMBH obscuration: Torus

(Strict-) Unified scheme

(e.g., Antonucci 1993, ARA&A, 31, 473)

• Type-1:2 = 1:4

(e.g., Maiolino & Rieke 1995, ApJ, 454, 94)

Origin (or nature) of the torus has been poorly understood!!

SMBH obscuration: Torus

(Strict-) Unified scheme

(e.g., Antonucci 1993, ARA&A, 31, 473)

• **Type-1:2** = 1:4

(e.g., Maiolino & Rieke 1995, ApJ, 454, 94)

Origin (or nature) of the torus has been poorly understood!!

Several scenarios for the origin

Accretion disk scale

• Disk winds

(Elitzur & Shlosman 2006; Nomura et al. 2016)

Circumnuclear disk scale (~10-100 pc)

→ ALMA

- Energy release from massive inflows (Vollmer et al. 2008)
- Starburst/Supernova feedback (Wada & Norman 2002; Wada 2009)
- Radiation-driven fountain (Wada 2012, 2015)

Host galaxy scale

(Cold gas/dust in galaxy disks)

CND-scale obscuration: evolutionary?

E.g., Wada & Norman 2002, Elitzur & Shlosman 2006, Vollmer et al. 2008, Wada 2012

Disappearance of tori in LLAGNs?

Low-luminosity AGN (L_{Bol} < 1e42 erg/s) \rightleftharpoons Geometrically thin torus

Disappearance of tori in LLAGNs?

Low-luminosity AGN (L_{Bol} < 1e42 erg/s) \rightleftharpoons Geometrically thin torus

ALMA, for this study

- Cold molecular gas
 - reflects bulk of CND-scale gas mass
 - suitable to probe connections with, e.g., star formation
- High angular resolution and sensitivity
 - torus: ~ 10 pc structure (<~ 0.1")
 - (- now θ is even higher than the VLT observations)
- Quite high spectral resolution → essential for dynamical modelings

CO torus of NGC 1068 (L_{Bol} ~ 7e44 erg/s) 7

- Nearby <u>luminous</u> type-2 AGN
- Clear concentration of the CO(6-5) emission at the center \rightarrow <u>Torus</u> \rightarrow M_{gas} ~ 1e5 M_{sun}; $\sigma/V_{rot} > 1$ (i.e., <u>H/R > 1 = geometrically thick</u>)

This study: LLAGN NGC 1097 (L_{Bol} ~ 8e41 erg/s) ⁸

- Low-luminosity AGN (LLAGN)

 L_{Bol} = 8e41 erg/s
 (= 1/875 of NGC 1068)
- D = 14.5 Mpc (1" = 70 pc)
- Extensively studied at mm/submm (e.g., Izumi et al. 2013)
- ALMA Band 7 study in Cycle 1+3
 ¹²CO(3-2) + 860 µm continuum

	Resolution	Sensitivity
860µm cont.	0.11" x 0.08"	~50 µJy∕b
¹² CO(3-2)	0.17" x 0.11"	0.84 mJy/b (dV=10 km/s)

Circumnuclear disk of NGC 1097

9

Close-up view of this LLAGN

- No clear CO peak at the AGN (continuum) position
- M_{gas} ~ 5e4 M_{sun} there
 (1/2 1/3 of NGC 1068)
 - → less gas (optically)
 - *thinner torus*) in NGC 1097 than NGC 1068
- Less active inflows/star-

formation (i.e., energyinput) there!

- → Expect: geometrically
- thinner torus (w.r.t NGC 1068)

Constraints on the torus geometry

- Regular rotation is dominant
- We decomposed rotation and dispersion, with a titled-ring model (^{3D}Barolo code)
- Fit: V_{rot}, σ, inclination,
 PA, center, V_{sys}, intensity

Constraints on the torus geometry

• Fit: V_{rot} , σ , inclination,

PA, center, V_{sys}, intensity

11

CO torus of NGC 1097 (L_{Bol} ~ 8e41 erg/s)¹²

- The velocity structure was decomposed to (i) rotation and (ii) dispersion
- σ/V_{rot} = <u>0.5</u> in NGC 1097 (LLAGN) vs. <u>>1 (likely >3!)</u> in NGC 1068 (luminous)
- A CND-scale torus geometry would depend on the AGN power (→ via inflows and/or star formation...?)

Summary: High-resolution CO study

- Torus geometry would depend on the AGN power (via massive inflows and/or star formation): theoretical prediction
- No clear concentration of CO(3-2) at the AGN position of NGC 1097
- ~10 pc scale comparison between <u>NGC 1097 (LLAGN)</u> and <u>NGC 1068 (luminous AGN)</u>

