ALMA observation of ¹²CO/¹³CO(3-2) molecular gas in merging ULIRGs

Misaki Ando (SOKENDAI/NAOJ)

Working with:

Daisuke Iono, Toshiki Saito, Junko Ueda, Tomonari Michiyama

Galaxy Merger

Galaxy merger is key to understand galaxy evolution

Global ¹²CO/¹³CO line ratio

The global ¹²CO/¹³CO ratio is know to be higher

Case study: NGC 1614

ALMA observation of ¹²CO/¹³CO line ratio

Contrary to expectations, the ¹²CO/¹³CO ratio is low at the central region

Possibly due to gas inflow to the central star forming region

Next step is to increase the sample

Target Sources & Observations

Sample

Six mergers of the brightest ULIRGs (L_{\rm IR} > 10^{12} \ L_{\odot}) in the local universe

- ✓ ALMA cycle 3-4
- ✓ Band 7
- ✓ Spatial resolution: ~ 200pc

¹²CO(3-2), ¹³CO(3-2) and dust continuum

¹²CO(3-2) & ¹³CO(3-2) Intensity maps

¹²CO(3-2)

¹³CO(3-2)

> ¹²CO is much more extended than ¹³CO

Star formation tracer

Spatially resolved ¹²CO/¹³CO(3-2) ratio map

	IRAS 13120	IRAS 17207	IRASF 05189	ESO 286	ESO 148	IRASF 12112	Spiral galaxies
Average	21	17	14	22	22	21	~]]
Ratio at the SF peak	22	8	11	12	15	13	

General Trends:

- 1. The global ratio is higher (~20) than normal spiral galaxies (~10)
- 2. Ratio at the strong dust continuum region is lower than outskirts (i.e. outskirts are higher)

Spatially resolved ¹²CO/¹³CO(3-2) ratio map

Spatially resolved ¹²CO/¹³CO(3-2) ratio map

Exact reason still to be investigated

¹²CO/¹³CO(3-2) ratio is low at the dust continuum peak Why? The lower ¹²CO/¹³CO(3-2) ratio at the dust continuum peak

Possible reasons

Opacity (low ¹²CO or high ¹³CO opacity)
 Gradients in relative abundance

The lower ¹²CO/¹³CO(3-2) ratio at the dust continuum peak

Possible reasons

Opacity (low ¹²CO or high ¹³CO opacity)
 Gradients in relative abundance

Turbulent dominated gas?
Depopulated low-J gas to higher excitation?

e.g. Aalto et al. 1991

The lower ¹²CO/¹³CO(3-2) ratio at the dust continuum peak

Possible reasons

Opacity (low ¹²CO or high ¹³CO opacity)
 Gradients in relative abundance

Example: Arp 220

[¹²CO]/[¹³CO] abundance ratio differ between the center and the outer regions

- ✓ Center: 90
- ✓ East: 159
- ✓ West: 142

Sliwa et al. 2017

Summary

- ✓ ¹²CO(3-2) and ¹³CO(3-2) in six merging ULIRGs with ALMA
- ✓ ¹²CO(3-2)/¹³CO(3-2) ratio maps
 - The global higher ratio is due to the extended gas rather than the center
 - Ratio at the strong dust continuum (star forming) region is lower than outskirts
- ✓ Possible reasons
 - Opacity
 - Abundance variation
 - => additional analysis is needed!

Future Work

- ✓ ¹²CO(1-0), HCN(4-3), HCO+(4-3), CS(7-6) etc...
- Solve the radiative transfer model to investigate more detailed physical conditions