Evolutional phases of three Class 0 protostars in Serpens Main

Yusuke Aso (ASIAA) Aso+'17b, ApJL, 850, L2; Aso+'18 in prep.

Naomi HIrano (ASIAA), N. Ohashi, K. Saigo, M. Saito, K. Tomisaka (NAOJ)、Y. Aikawa (The Univ. of Tokyo), S. Takakuwa (Kagoshima Univ.), K. Tomida (Osaka Univ.), M. Machida (Kyushu Univ.), H.-W. Yen (ESO), J. Williams (Univ. of Hawaii)

1. Introduction — evolution in star formation

5000 AU

➢ Early phases (starless → Class 0) cannot be observed in optical/NIR/MIR.

Millimeter observations: Continuum ——Column density. Structure e.g., spherical or disk-like.

Outflows ——Evidence of mass accretion. Gravitational potential.

Chemistry — Abundance reflecting thermal history.

[Class 0] $T_{bol} < 70 \text{ K}$ $\Delta t \sim 30 \text{ kyr}$

Andre'02, Nakamura+'12, Aso+'17a

1. Introduction — Serpens Main Yusuke ASO (ASIAA)

3

Serpens Main:

- Cluster forming region.
- Two episodes of star formation, 2 Myr and 0.5 Myr ago.
- *D*=429 pc, *M*=30 *M*_☉ (each subcluster).
- Sub-mm sources (SMM) by JCMT.
- YSOs by Spitzer.
- 1.3 mm sources without counterparts in 70 µm (SMA archival data).
- Cyan boxes were observed this time.

Contours: JCMT 850 µm Color: Herschel 70 µm

2. ALMA observations

Atacama Large Millimeter/submilleleter Array (Cycle 3, May 19, 21 2016, PI: Y. Aso)

> Calibrators:

J1751-0939 (Bandpass), Titan (Flux),
 J1830+0619 (470 mJy; Gain),
 J1824+0119 (79 mJy; Gain)
 ➢ Data reduction : CASA, MIRIAD

	v (GHz)	Δv	Beam Size	σ (mJy/beam)
Continuum	225	4 GHz	0.57"×0.46" (-85°)	~0.1
¹² CO J=2–1	230.5380000	1.27 km s ⁻¹	0.61"×0.50" (-83°)	~3.7
C ¹⁸ O J=2–1	219.5603541	0.083 km s ⁻¹	0.64"×0.52" (-83°)	~12

3. Results — $1.3 \text{ mm} \& 70 \text{ } \mu\text{m}$

Circle : ALMA Primary Beam Contours: 3,6,12,24,... σ

3. Results — SED

	SMM11	SMM4a1 SMM4a2
$T_{\sf bol}$ (K)	~26	~30
$L_{\sf bol}$ (L_{\odot})	< 0.91	< 2.6
L_{int} (L_{\odot}) †	< 0.04	< 0.3
L_{submm} (L_{\odot}) ††	~0.095	~0.31

† From 70 μm flux (Dunham+'08), †† From >350 μm fluxes.

350 μ m CSO SHARC-II (Suresh+'16), 450, 850 μ m JCMT SCUBA (Davis+'99) <u>1.3 mm ALMA (this work), 3 mm CARMA (K. Lee+</u>'14)

- ➢ Aperture photometry using Spitzer & Herschel.
 +FIR/sub-mm/mm from literature.
 → All the three are Class 0 (T_{bol}<70 K).
- SMM11 has one order fainter L_{bol} and L_{int} than SMM4.
- The difference of L_{bol} and L_{int} is mainly due to contamination from nearby YSOs in this region.

3. Results — Continuum Visibility

SMM11:
 Similar profiles at different uv-angles.
 Spherical envelope (or face-on disk).

Synthetic observations of CLEAN components of SMM4a1 and 4a2 divided in the image domain.

- ➤ SMM4a1:
 - Null point at ~290 m (major axis). \rightarrow If boxcar disk then $r \sim 240$ AU.
- ➤ SMM4a2:
 - Point source at 200-600 m.
 - \rightarrow unresolved disk, *r* < 30 AU.

3. Results — $C^{18}O$ abundance

C¹⁸O J=2–1 Contour: moment 0 Color: moment 1 Arrows: outflows

Yusuke ASO (ASIAA)

Inter stellar medium: $X(C^{18}O) \sim 5 \times 10^{-7}$ (Lacy+'94, Wilson & Rood '94)

SMM11: Double peak. X(C¹⁸O)~2-3×10⁻¹⁰ at the center. Frozen-out due to low *T*. East-west extension is due to heating by the outflow (shock, cavity).
 SMM4a1: Negative intensity due to continuum subtraction (*T*_b~ −9 K).
 SMM4a2: Single peak. X(C¹⁸O)~0.7-1×10⁻⁸ at the center. Possibly frozen-out.

3. Results -12CO J=2-1 outflows

DEC (J2000

Contour: moment 0 Color: moment 1

Yusuke ASO (ASIAA)

SMM11: Bipolar outflow. Slower (I.o.s) velocity than SMM4a2.
 SMM4a1: Fan-shaped toward the north with low velocity.
 SMM4a2: Collimated bipolar outflow with high velocity.

4. Discussion — Outflow directions (SMM11)

¹²CO moment 0

¹²CO Position-Velocity diagrams

➤ The SMM11 outflow lies almost on the plane of the sky.
 ➤ Wind-driven shell (parabolic) model: z = c₀R², V = v₀R

 → inclination angle i~80°, c₀~4 kAU⁻¹, v₀~9 km s⁻¹ kAU⁻¹

 $> \sim 30$ km s⁻¹ @ 3000 AU requires point mass, i.e., a protostar.

4. Discussion — Outflow directions (SMM4a2)

Momentum

Vectors \vec{P}

➤ The SMM4a2 outflow ejects mass periodically.
 ➤ If only inclination angles are different with common momenta and positions,
 → inclination angles i_{blue}~36°, i_{red}~70°; Bending angle α~40°,
 lengths L~1000 AU (dashed), 2000 AU (solid), velocity V~60 km s⁻¹,
 where P∝I_v×V assumed.

4. Discussion — Possible origin of bending

SMM4a2 outflow is bending by α~40°.
> Binary orbital motion?
Separation ~2000 AU, too slow.

Dynamical interaction?
 Apparently pulled by SMM4a1 outflow.
 While, pc-scale outflows can push (Davis+'99).

➢ Electro-magnetic interaction? Required B∝tan α V/L with normalization about current (Ching+'16, Fendt&Zinnecker'98) → order of mG, which could occur around protostars.

Figure 9 in Ching+'16

NGC1333 IRAS 4A

5. Summary

Summary:

Millimeter observations have revealed evolutionary phases in more detail than Class 0. *←Naomi Hirano's talk tomorrow*

Youngest SMM11: L_{int}=0.04 L_☉, CO frozen out (~1000x), spherical envelope.

> Intermediate SMM4a2: collimated fast outflow, point source (r < 30 AU).

Oldest SMM4a1: T_b(1.3 mm)~20 K, fan-shaped slow outflow, disk-like structure (r~200 AU).

Inclination angles of the outflows were also constrained.

Future plan:

- \succ To observe molecules not frozen-out in SMM11.
- \succ Dynamics of the possible disks around SMM4a1 and 4a2.

Yusuke ASO (ASIAA) 3. Results — Continuum Visibility

400

uv distance (m)

200

600

600

400

uv distance (m)

200

0.05

0.00

0

0.4

0

Before divided.

Synthetic observations of CLEAN components of SMM4a1 and 4a2 divided in the image domain.

- ➤ SMM4a1:
 - Null point at ~290 m (major axis). \rightarrow If boxcar disk then $r \sim 240$ AU.
- ➢ SMM4a2:
 - Point source at 200-600 m.
 - \rightarrow unresolved disk, *r* < 30 AU.

3. Results — Position-Velocity diagram

Passing 4a1 and 4a2

Along 4a2 outflow

Across 4a2 outflow

