November 27, KASI, Daejeon, Korea East-Asia ALMA Science workshop 2017

ALMA VIEW OF HIGH-REDSHIFT GALAXIES

Ken-ichi Tadaki (NAOJ)

I. Our ALMA results about bulge formation in massive galaxies

II. A review of recent ALMA studies for high-z galaxies

BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT $z\sim2$

Ken-ichi Tadaki¹, Reinhard Genzel^{1,2,3}, Tadayuki Kodama^{4,5}, Stijn Wuyts⁶, Emily Wisnioski¹, Natascha M. Förster Schreiber¹, Andreas Burkert^{1,7}, Philipp Lang¹, Linda J. Tacconi¹, Dieter Lutz¹, Sirio Belli¹, Richard I. Davies¹, Bunyo Hatsukade⁴, Masao Hayashi⁴, Rodrigo Herrera-Camus¹, Soh Ikarashi⁸, Shigeki Inoue^{9,10}, Kotaro Kohno^{11,12}, Yusei Koyama¹³, J. Trevor Mendel^{1,7}, Kouichiro Nakanishi^{4,5}, Rhythm Shimakawa⁵, Tomoko L. Suzuki⁵, Yoichi Tamura¹¹, Ichi Tanaka¹³, Hannah Übler¹, and Dave J. Wilman^{1,7}

Hubble sequence

disk-dominated n<2

NASA, ESA, M. Kornmesser

Galaxy evolution

disk-dominated star-forming galaxies

bulge-dominated quiescent galaxies

How did galaxies change morphologies?

Our approach:

Study the spatial distribution of star formation

Where do stars form?

The most massive SFGs at z=2.5 (Tadaki+17)

HST (H-band) HST (I-band)

0-

stellar mass

unobscured star formation

extended disk

clumpy

Dust extinction problem

0

For the most massive star-forming galaxies
IR light traces ~100% of total star formation

Where do stars form?

The most massive SFGs at z=2.5 (Tadaki+17)

HST (H-band) HST (I-band) ALMA (870µm)

0

stellar mass

extended disk

clumpy

unobscured dust-obscured star formation star formation

> centrallyconcentrated

extended disk

clumpy structure

compact starburst

ALMA & HST view

 they have an extended, exponential disk
star-forming regions are extremely compact suggesting radial transport of gas

Conclusion

 \cap

Massive SFGs are transforming through compact dusty starbursts at z~2.5

November 27, KASI, Daejeon, Korea East-Asia ALMA Science workshop 2017

ALMA VIEW OF HIGH-REDSHIFT GALAXIES

Ken-ichi Tadaki (NAOJ)

I. Our ALMA results about bulge formation in massive galaxies

II. A review of recent ALMA studies for high-z galaxies

✓ Gas mass measurements

✓ Fine structure lines

THE ASTROPHYSICAL JOURNAL, 799:81 (14pp), 2015 January 20 © 2015. The American Astronomical Society. All rights reserved.

doi:10.1088/0004-637X/799/1/81

THE SCUBA-2 COSMOLOGY LEGACY SURVEY: ALMA RESOLVES THE REST-FRAME FAR-INFRARED EMISSION OF SUB-MILLIMETER GALAXIES

J. M. SIMPSON¹, IAN SMAIL¹, A. M. SWINBANK¹, O. ALMAINI², A. W. BLAIN³, M. N. BREMER⁴, S. C. CHAPMAN⁵, CHIAN-CHOU CHEN¹, C. CONSELICE², K. E. K. COPPIN⁴, A. L. R. DANIELSON¹, J. S. DUNLOP⁷, A. C. EDGE¹, D. FARRAH⁸, J. E. GEACH⁶, W. G. HARTLEY^{2,9}, R. J. IVISON^{7,10}, A. KARIM¹¹, C. LANI², C.–J. MA¹, R. MEIJERINK^{12,13}, M. J. MICHAŁOWSKI⁷, A. MORTLOCK^{2,7}, D. SCOTT¹⁴, C. J. SIMPSON¹⁵, M. SPAANS¹², A. P. THOMSON¹, E. VAN KAMPEN¹⁰, AND P. P. VAN DER WERF¹³

THE ASTROPHYSICAL JOURNAL, 810:133 (12pp), 2015 September 10 © 2015. The American Astronomical Society. All rights reserved.

doi:10.1088/0004-637X/810/2/133

COMPACT STARBURSTS IN $z\sim$ 3–6 SUBMILLIMETER GALAXIES REVEALED BY ALMA

Soh Ikarashi^{1,2,3}, R. J. Ivison^{1,4}, Karina I. Caputi³, Itziar Aretxaga⁵, James S. Dunlop⁴, Bunyo Hatsukade⁶, David H. Hughes⁵, Daisuke Iono^{6,7}, Takuma Izumi², Ryohei Kawabe^{2,6,7}, Kotaro Kohno^{2,8}, Claudia D. P. Lagos¹, Kentaro Motohara², Kouichiro Nakanishi^{6,7,9}, Kouji Ohta¹⁰, Yoichi Tamura², Hideki Umehata², Grant W. Wilson¹¹, Kiyoto Yabe⁶, and Min S. Yun¹¹

THE ASTROPHYSICAL JOURNAL LETTERS, 827:L32 (7pp), 2016 August 20 © 2016. The American Astronomical Society. All rights reserved.

doi:10.3847/2041-8205/827/2/L32

SUB-KILOPARSEC ALMA IMAGING OF COMPACT STAR-FORMING GALAXIES AT $z \sim 2.5$: REVEALING THE FORMATION OF DENSE GALACTIC CORES IN THE PROGENITORS OF COMPACT QUIESCENT GALAXIES

G. BARRO¹, M. KRIEK¹, P. G. PÉREZ-GONZÁLEZ², J. R. TRUMP^{3,12}, D. C. KOO⁴, S. M. FABER⁴, A. DEKEL⁵, J. R. PRIMACK⁶, Y. GUO³, D. D. KOCEVSKI⁷, J. C. MUÑOZ-MATEOS⁸, W. RUJOPARKARN^{9,10}, AND K. SETH¹¹

Consensus: dust continuum is very compact (R_e=1-2 kpc)

They have an exponential disk median Sersic index of 0.9±0.2

0

0-

The brightest submillimeter galaxy at z=4.3 (lono+16)

on-source time: ~20 min (cycle-1)

dust emission is very compact R_e ~ 1 kpc

 \mathbf{O}

0

dust emission is very compact $R_e \sim 1 \text{ kpc}$

The brightest submillimeter galaxy at z=4.3 (lono+16)

on-source time: ~30 min (cycle-3)

0

 \mathbf{O}

Dual cores +extended disk + clumpy structure3-4 kpc200-300 pc

✓ Gas mass measurements

✓ Fine structure lines

1. Dust continuum

2. CO line

3. CI line

3.0

2.0

1.5

2. CO line

B. CI line

on-source time: 1.4 hours (cycle-4)

 \cap

- I. Dust continuum
- 2. CO line

0

3. CI line

Large molecular gas reservoirs in quenched galaxies at z=0.7 (Suess+17)

- 1. Dust continuum
- 2. CO line
- 3. CI line

 \Box

Ancestors of MW-mass galaxies (z=1.2-1.3, Papovich+16)

- **1. Dust continuum**
- 2. CO line
- 3. CI line

<u>A massive cluster at z=1.5 (Hayashi+17)</u>

on-source time: 1 hour (cycle-3)

0

17 CO(2-1) detections

 \mathbf{O}

ISIM mass measurements

 \mathbf{O}

- **1. Dust continuum**
- 2. CO line

0

3. CI line

- **1. Dust continuum**
- 2. CO line
- 3. CI line

A massive star-forming galaxy at z=2.2 (Popping+17)

time-consuming

0

reliable

 \mathbf{O}

Also need to check dynamical mass

✓ Gas mass measurements

✓ Fine structure lines

Fine structure line studies

	[CII]158um	[OIII]88um
z=6-7.5	Band-8	Band-6
z~8	Band-7	Band-5

CII]158um dete

[CII] 158um detections in ALMA era

Four galaxies at z=6.6-7.2 (Pentericci+17)

Ο

[CII] 158um detections in ALMA era

 \mathbf{O}

[CII] 158um non-detections

A galaxy at z=6.6 (Ouchi+13)

0

dust cont.

[CII] channel maps

<u>A galaxy at z=7.0 (Ota+14)</u>

 \mathbf{O}

dust cont.

[CII] spectrum

What is the difference between detections and non-detections?

What is the difference?

[OIII] 88um line

0-

Band-8		Band-6
2 hours	on-source	1.8 hours
0.042 mJy	1σ (cont.)	0.014 mJy
[OIII] 88um	line	[CII] 158um
0.45 Jy km/s	line flux	<0.069Jy km/s

[OIII] 88um line

Hot topics in high-z galaxy science

-0

z~1

z=1-5

z=6-9

redshift

✓ It is now possible to measure gas masses even for quiescent galaxies or low stellar mass galaxies at z~1 through CO observations.

0-

- ✓ 0.1-0.3" resolution observation revealed that the dust continuum emission is very compact for dusty starforming galaxies at z=1-5. But higher resolution observations show more complex morphologies.
- ✓ [OIII]88um line will open the way for z>8 metal-poor galaxies. [CII]158um line is still useful for studying more metal-rich galaxies at z~6.

If you want to make creative works, following these trends is not a good way.

Thank you for your attention