Circumstellar Disks: a Testbed of Spinning Dust with ALMA Band 1?

Thiem Hoang (KASI & UST) with *Kim Yun-Jeong (CNU)*

East-Asia ALMA Science Workshop, Daejeon, Nov 28-30, 2017

History of Anomalous Microwave Emission (AME) & Spinning Dust

CMB Foreground

Cosmic Microwave Background (CMB)

Planck Collaboration

1996 Kogut et al. found emission excess at 31 GHz

1997 Leitch et al. found emission excess at 14.5 & 31GHz (AME intro)

1998 Draine & Lazarian proposed spinning dust by very small grain (PAH)

Selected AME regions discovered by Planck 2011

Planck Collaboration 2011, A20

Spinning dust provides a great fit to AME from *Planck*

Spinning dust becomes an accepted CMB foreground

Copyright of Planck Collaboration

Physics of Spinning Dust Emission

Rapidly spinning

dipole moment

Key Developments of Spinning Dust Theory

Development

Reference

First proposal for electric dipole radiation fr	Erickson (1957)
First full treatment of spinning dust grain th	Draine and Lazarian (1998b)
Quantum suppression of dissipation and alig	Lazarian and Draine (2000)
Factor of two correction in IR damping coet	Ali-Haïmoud et al. (2009)
Fokker-Planck treatment of high- ω tail	Ali-Haïmoud et al. (2009)
Quantum mechanical treatment of long-way	Ysard and Verstraete (2010)
Rotation around non-principal axis	Hoang et al. (2010); Silsbee
Transient spin-up events	Hoang et al. (2010)
Effect of tri-axiality on rotational spectrum	Hoang et al. (2011)
Effects of transient heating on emission fror	Hoang et al. (2011)
Magnetic dipole radiation from ferromagnet	Hoang and Lazarian (2016b)
Improved treatment of quantum suppression	Draine and Hensley (2016)

AME from nanosilicates: AME polarization:

Dickinson, et al., incl Thiem Hoang (2018, A&A Review) Hoang + (2016), Hensley & Draine (2017) Hoang + (2013), Hoang & Lazarian (2016a, 2017)

Spinning Dust Emission Model

Draine & Lazarian (1998)

Hoang, Draine, & Lazarian (2010) Hoang, Lazarian, & Draine (2011)

Emissivity integrated over size distribution:

PAH

U

 $\frac{\overline{j_{v}}}{n_{H}} = \frac{1}{4\pi} \int_{a_{\min}}^{a_{\max}} da \frac{1}{n_{H}} \frac{dn}{da} 4\pi\omega^{2} f_{\omega} 2\pi P_{ed}(\omega)$

spinning & wobbling

a,

spinning

only

(U)

μ

What is the exact carrier of AME? 1. Spinning dust emission:

- 1. spinning PAH molecules (Draine & Lazarian 1998)
- 2. spinning silicate nanoparticles (Hoang et al. 2016)
- 3. spinning iron nanoparticles (Hoang & Lazarian 2016)

2. Magnetic Dipole Emission

PAH molecule

Nanosilicate

Iron Nanoparticle

SEI 3.0MV X3.300 1µm WD 6.0

spinning PAH (Planck collaboration 2011)

spinning nanosilicates (Hoang et al. 2016)

spinning iron nanoparticle (Hoang & Lazarian 2016)

Full-sky analysis found no correlation of AME withPAH abundanceHensley, Draine, & Meisner (2015)

Circumstellar Disk: a Testbed for Spinning Dust Theory

PAHs and Nanodust in circumstellar disks

IR Emission Spectrum (Seok & Li 2017)

 Strong PAH features
 detected (Acke + 2004, Habart + 2004)

9.7 micron Silicate
emission features
detected in some disks

Spinning Dust from Disk and Its Importance

PAHs/VSG well mixed to the gas due to turbulence (Dullemond + 2005)

- Fragmentation produces PAHs/ VSG
- Grain coagulation and dust settling
- Observations provide smoking-gun evidence for spinning PAHs and spinning nano silicates
- Spindust trace Nanodust in the entire disk (cf. Mid-IR)

Modeling of Spinning Dust Emission in Disk

Size Distribution of PAH/VSG

Log-normal grain size distribution

$\frac{1}{dn} =$	$\frac{B}{-}\exp$	_0.5	$\frac{\log(a/a_0)}{\log(a/a_0)}$	2
n _H da	a `	Ĺ	σ	

where B is determined by abundance of C/Si in nanoparticles, a₀, sigma controls the peak

Rotational Dynamics of PAH/VSG

- PAH/VSGs acquire/loose momentum by neutral and ion collisions, plasma drag, and IR emission
- In the disk interior, PAH/VSGs are negatively charged
- Small PAH/VSGs have suprathermal rotation

Microwave Emission Spectrum: Spinning PAHs

- Smaller PAHs emit stronger spindust emission
- Surface layer little contribution

 Spindust emission larger than thermal emission up to 10 times

Emission Spectrum: Spinning PAH & Nanosilicate

Spinning nanosil increases emission flux by 3 times

Spindust emission up to 25 times of thermal emission

Best targets for Observations

Object			Best-f	ît		5.00 PAN a ch
	a ₀ (Å)	σ	$\overset{a_p}{(A)}$	$\phi_{\rm ion}$	$M_{\rm PAH}^{10{\rm auc}}$ ($10^{-6}M_{\odot}$)	$a_{\min}^{1,\alpha} = 3.5A$ Small PAHs $(a_0=2.0Å, \sigma=0.2)$ Interstellar PAHs $(a_0=3.5Å, \sigma=0.4)$ Large PAHs $(a_0=5.5Å, \sigma=0.9)$ – –
AB Aur	5.0	0.2	5.64	0.7	1.96	$1.00 = 1.00 \times 10^{-5.00}$
AK Sco	2.5	0.3	3.50	0.0	0.56	a =62.47Å
BD+40°4124	5.5	0.4	8.89	0.3	1.01	ep i i i i i i i i i i i i i i i i i i i
BF Ori	2.5	0.6	7.36	0.1	0.44	
DoAr21	5.5	0.2	6.20	0.1	12.4	ĭ¥ [] ∖/
EC82	2.0	0.2	3.50	0.0	540	
HD 31648	4.5	0.2	5.07	0.4	1.56	- 010
HD 34282	4.0	0.2	4.51	0.8	3.86	
HD 34700	2.0	0.2	3.50	0.5	11.7	
HD 35187	2.5	0.5	5.29	1.0	1.12	
HD 36112	5.0	0.2	5.64	0.3	0.96	
HD 36917	5.5	0.3	7.20	0.3	0.62	
HD 37357	2.0	0.2	3.50	0.1	0.69	0.01
HD 37411	3.5	0.3	4.58	1.0	2.27	
HD 37806	5.0	0.5	10.59	0.6	0.41	3 5 10 20 40 80
HD 38120	2.0	0.2	3.50	0.3	0.96	a (A)
HD 58647	5.5	0.2	6.20	1.0	0.052	
HD 72106	2.0	0.2	3.50	0.5	2.87	Seok & Li (2017)
HD 85567	5.0	0.3	6.55	0.9	0.054	
HD 95881	4.0	0.2	4.51	0.7	4.32	
HD 97048	5.0	0.2	5.64	0.4	6.42	
HD 97300	5.5	0.2	6.20	0.9	1.60	
HD 98922	2.5	0.2	3.50	0.6	0.99	Diele with encell DALle exhibit
HD 100453	2.0	0.2	3.50	0.7	4.72	DISKS WITH SMAIL PARS EXHIBIT
HD 100546	5.0	0.2	5.64	0.2	5.37	etrong Spinning ductAME most
HD 101412	2.0	0.2	3.50	0.7	3.13	Strong Spinning dustAime, most
HD 135344B	4.5	0.2	5.07	1.0	1.55	favored targets for observations
HD 139614	4.0	0.2	4.51	1.0	1.83	
HD 141569	2.0	0.2	3.50	1.0	0.19	
HD 142527	3.0	0.3	3.93	0.3	7.51	
HD 142666	3.5	0.2	3.95	0.5	2.08	
HD 144432	3.5	0.8	23.87	0.0	6.50	
HD 145718	2.0	0.2	3.50	0.2	5.17	

Summary and Discussion

- The AME is real, lots of observational evidence for spinning dust
- The exact carrier is still unclear, polarization can distinguish
- PAHs and Nanosilicate from PPDs produce strong emission excess, up to 25 times thermal dust emission
- Future ALMA Band 1 and SKA perfect tools for testing Spindust
- A powerful new probe of nano dust in the entire disk (cf. mid-IR only traces surface layer)

Thank You Very Much!감사합니다!

Constraining abundance of nanosilicate

Hensley & Draine (2017)