THE SYNTHETIC ALMA MULTIBAND ANALYSIS OF DUST PROPERTIES OF THE TW HYA PROTOPLANETARY DISKS

Seongjoong Kim¹, Hideko Nomura¹, Takashi Tsukagoshi², Ryohei Kawabe³, Takayuki Muto⁴

¹ Tokyo Institute of Technology,

² Ibaraki University,

³ National Astronomical Observatory of Japan,

⁴ Kogakuin University

INTRODUCTION

Protoplanetary disk

 Rotationally supported gas
 and dust disk around young
 pre-main sequence stars

- Importance for Star & Planet formation
 - Early phase of the star formation processes
 - Initial condition for planet formation
 Mass, Temperature, Chemical composition, etc.

INTRODUCTION:TW HYA

- TW Hya
 - d ~ 54 pc ¹
 - Age ~ 3- 10 Myr 1
 - $M_{\star} \sim 0.8 \ \text{M}_{\odot}$ with $M_{\text{disk}} > 0.05 \ \text{M}_{\odot}$
 - Multiple ring structure ^{2,3,4}
 - I.Dynamics:
 - Disk-Protoplanet interaction?^{5,6,7,8}
 - Secular Gravitational instability?^{9,10}
 - 2.Chemistry:

TW Hya (Sean Andrew)

- Dust growth or destruction at the location of snowlines 11,12
- Baroclinic instability induced by dust settling¹³

¹ Andrew et al. 2012, ² Andrew et al. 2016, ³ Nomura et al. 2016, ⁴ Tsukagoshi et al. 2016 ⁵Kanagawa et al. 2015, ⁶Kanagawa et al. 2016, ⁷Dipierro et al. 2015, ⁸Dong et al. 2015, ⁹Youdin 2011, ¹⁰Takahashi & Inutsuka 2014, ¹¹Zhang et al. 2015, ¹²Okuzumi et al. 2016, ¹³Loren-Aguilar & Bate 2015

PREVIOUS WORK

- The origin of the gaps?
- Under some simple assumptions $I_{\nu}(R) = B_{\nu}(T_{d}(R)) (1 - exp[-\tau_{\nu}])$ $\kappa_{\nu} \propto \nu^{\beta}$ $\alpha(R) = \frac{d\log(I_{\nu})}{d\log\nu} = 3 - \frac{h\nu}{k_{B}T_{d}(R)} \frac{e^{h\nu/k_{B}T_{d}(R)}}{e^{h\nu/k_{B}T_{d}(R)} - 1} + \beta(R) \frac{\tau_{\nu}(R)}{e^{\tau_{\nu}(R)} - 1}$ $T_{d} = 26 \left(\frac{r}{10 \text{ AU}}\right)^{q} \text{ where } q = 0.3 - 0.5$

Dust continuum of Band 4+6 &

 \Rightarrow Estimation of $\tau_{\nu} \& \beta$

Tsukagoshi et al. 2016)

• A Bump of β at a gap at ~22 AU \Rightarrow The existence of planet?

spectral index α

SENSITIVITY PROBLEM IN ANALYSIS

1.10

at 30 AU

1.05

 \because The error in T_d has high sensitivity to the observational error

✓ What is the best set of 3 ALMA bands??

SYNTHETIC ALMA MULTIBAND OBSERVATION: MODEL VALUES

• Calculate $I_{\nu,model}$ from assumed $T_{d,model}$ and $\tau_{\nu,model}$ & β_{model}

 $I_{\nu}(R) = B_{\nu}(T_{d}(R)) (1 - exp[-\tau_{\nu}])$ $\kappa_{\nu} \propto \nu^{\beta}$ $\alpha(R) = \frac{d \log(I_{\nu})}{d \log \nu} = 3 - \frac{h\nu}{k_{B}T_{d}(R)} \frac{e^{h\nu/k_{B}T_{d}(R)}}{e^{h\nu/k_{B}T_{d}(R)} - 1} + \beta(R) \frac{\tau_{\nu}(R)}{e^{\tau_{\nu}(R)} - 1}$

SYNTHETIC ALMA MULTIBAND OBSERVATION: SENSITIVITY ANALYSIS

• Obtain $T_{d,syn}$, $\tau_{\nu,syn}$ & β_{syn} which satisfy $I_{\nu,syn}$ within ±10% error of $I_{\nu,model}$ at 3 bands

 $I_{\nu}(R) = B_{\nu}(T_{d}(R)) (1 - exp[-\tau_{\nu}]) \qquad \kappa_{\nu} \propto \nu^{\beta}$

RESULT

- All possible combinations of 3 bands among ALMA Band [3, 4, 5, 6, 7, 8, 9, 10].
 The best set is Band [10, 7,3]
- 2 conditions for good constraint on the $T_{d,syn}$, $\tau_{\nu,syn}$ & β_{syn}
 - I. One of [9,10] + One of [3,4]
 - 2. One more band which has enough frequency interval between the selected bands

 $T_{d,model}(R) = 26 K(R/10AU)^{0.4}$

RESULT

- We can constrain T_d , $\tau_{\nu} \& \beta$ with combined one band from 9 or 10 and one band from 3 or 4 ($\tau \ll I$)
- Enough frequency interval constrain T_d , $\tau_{\nu} \& \beta$ more accurately

DISCUSSION & FUTURE WORKS

Applying to observation data of Band [9,6,4]
 Band 9 (Schwarz+2016) + Band 4 & 6 (Tsukagoshi+2016)

Band [9,6,4] ~ 0.387"×0.218" vs Band [7,6,4] ~ 0.088"×0.062"

- We should think about
 - I. The assumption of $\kappa_{\nu} \propto \nu^{\beta}$
 - 2. The vertical structure of the disk

SUMMARY

- ALMA Multiband Analysis for constraining $T_d, \tau_{\nu} \& \beta$ of TW Hya PPD
 - Analysis of ALMA Band [7,6,4] observations :We find a large bump around 30 AU in $T_d(R)$
 - It's caused by high sensitivity to observational error
- Synthetic Multiband Analysis :We find 2 conditions for good constraint on T_d , τ_{ν} & β
 - I. One of Band [9, 10] + One of Band [3,4]
 - One more band which has enough frequency interval between the selected bands