Self-Calibration to IM Lup

행복 3조 김영준, 이남욱, 이은유, 황세연

(지도 : 이석호 박사님)

220 GHz Comitinuum image in MAPS

August 3, 2023

I. Introduction

Self-Calibration : why ?

Calibration is carried out using the gain calibrator

Observe source

- Observe calibrator to measure gains (amplitude and phase) as a function of time.
- Observe bright calibrator of known flux-density and spectrum to measure absolute flux calibration, band-pass and residual delays

Flux Calibrator (Flux, Bandpass, Delay Gain = Obs data/ Model
Ex) quasar (point source): phase =0, amp= constant along uv distance

- Additional calibration could be needed due to space and time differences between the target and the calibrator.
- Self calibration uses target itself as calibrator to improves the quality of images (to increase S /N) --> powerful technique

Method for Self-Calibration in CASA

tclean

 define & save model column for target

3) When imagesno longer improve,do amplitude calibration

gaincal (phase only calibration)

- Calculate temporal gain calibration solution (caltable
 - = 'data'/'model')
- Solution for N antenna could be derived from N(N-1)/2 baselines
- Reject solutions below minSNR

gaincal (amp & phase calibration)

Phase -> change with atmosphere Amplitude -> doesn't change much Start with shallow clean
Repeat with deeper cleans an d shorter solution intervals

applycal

applycal

- apply calibration table to data
- applycal : 'corrected' column= 'data' x 'calt able'

Comparison of amplitude

Before self calibration

After self calibratio

Self calibration to IM Lup (What we did)

Calibration with deeper clean

- ✓ We aim to perform self-calibration using the continuum data of a disk source IM Lup.
- investigate how much the image quality can be different through self-calibration paramet ers

(minSNR, threshold, weighting ...)

II. Phase Calibration

Self Calibration

1. It would be better to clean conservatively. It is hard to get rid of real sources, but easy to add new ones.

- 2. Make sure to check your solutions and compare the original visibility values to the new ones.
- 3. We have to check manually for each calibration step.
- 4. Amplitude self-calibration has more free parameters than phase calibration, so you need to exercise a bit more caution, especially if there's extended emission.

Let's see results with different depth of calibration and solint value!

Peak intensity & RMS & SNR for one phase-only calibration

Shallow calibration => High Signal to noise Ratio (?) >> We have to check images manually

We couldn't see any big difference among different depth of self-calibrations. Why?

August 3, 2023

Ш. Amplitude Calibration

Comparison of image

Before amplitude calibration

After amplitude calibration

August 3, 2023

Comparison of residual

Shallow clean

Deep clean

August 3, 2023

IV. Comparison of Weigh

uniform

Model(uniform)

August 3, 2023

briggs no self

Model(uniform)

Model(briggs)

August 3, 2023

2023 ALMA Summer School

natural

658

Model(natural)

August 3, 2023

208