Polarization of HL Tau
 Lee Deokhyeong, Moon Junyoung

 supervised by Aso Yusuke1. Introduction
2. Data Reduction

Contents

3. Results
4. Discussion
5. Summary

Introduction

Polarization Mechanisms in Young Stellar Objects

Observable polarization signals

Polarization intensity:
$P I=\sqrt{ }\left(U^{2}+Q^{2}+V^{2}\right)$
Polarization fraction:
p = PI / I
Polarization direction:
$\psi=1 / 2 \arctan (U / Q)$

Spectral index $\boldsymbol{\alpha}, \boldsymbol{\beta}$

Spectral index is related to dust properties, especially size of grain. Larger grain size gives smaller spectral index. (Draine, 2006)

$$
\begin{aligned}
F_{\nu} & \approx F_{\nu_{0}}\left(\frac{v}{\nu_{0}}\right)^{\alpha} \\
F_{\nu} & \approx \kappa_{\nu} B_{v}\left(T_{d}\right) \frac{M_{T}}{D^{2}} \quad(\text { optically thin }) \\
& \approx \kappa_{\nu_{0}}\left(\frac{v}{\nu_{0}}\right)^{\beta} \frac{2 k T_{d}}{c^{2}} v^{2} \frac{M_{T}}{D^{2}}
\end{aligned}
$$

$$
\text { therefore } \alpha \approx \beta+2 . \quad \text { Kwon+'09 }
$$

Large grains: Flux follows Rayleigh-Jeans law ($\alpha \boldsymbol{v}^{2}$), $\boldsymbol{\alpha} \sim 2, \boldsymbol{\beta} \sim 0$
Small grains: Flux follows Rayleigh scattering ($\alpha \boldsymbol{v}^{4}$), $\boldsymbol{\alpha} \sim 4, \boldsymbol{\beta} \sim 2$

Target HL Tau

HL Tauri is a Class I/II young stellar object in the constellation Taurus(황 소자리).

Distance: 140pc
RA: 04h 31m 38.43s
Dec: 18d 13m 57.12s

Very well studied in multiplewavelength polarized continuum emission using ALMA.

Data Reduction

Six measurement sets

	Frequency (GHz)	Robust	Beam Size \dagger $\left(" \times{ }^{\prime}\right)$	UV distance $(\mathrm{k} \boldsymbol{\lambda})$	$3 \boldsymbol{\sigma}$ noise level $(\mathrm{mJy} / \mathrm{beam})$
Band 3	97.5	-1.0	0.356×0.200	$3.6-780$	0.10
Band 4	145.0	0.5	0.312×0.260	$15.0-1,400$	0.50
Band 5	203.0	1.5	0.320×0.279	$8.5-1,920$	0.75
Band 6	233.0	0.5	0.321×0.232	$10.0-1,800$	3.5
Band 7a	343.5	-1.0	0.343×0.259	$14.2-770$	2.3
Band 7b	343.5	0.5	0.328×0.262	$14.0-2,100$	3.0

\dagger This beam size is obtained with the common uv-distance range (15-770 k $\boldsymbol{\lambda}$).
We smoothed the images to change all the beam sizes to 0.36 " $\times 0.36$ ".

Results

Intensity \& Polarization angle map

Color: Stokes I (Jy/beam) Segment length $\propto \mathrm{PI}$

Band 3
Circular pattern
Band 4

Intensity \& Polarization angle map
Color: Stokes I (Jy/beam) Segment length $\propto \mathrm{PI}$

Band 5
NE-SW (minor axis)
Band 6

Intensity \& Polarization angle map

Color: Stokes I (Jy/beam) Segment length $\propto \mathrm{Pl}$

Band 7a
NE-SW (minor axis)
Band 7b

Polarization Fraction

Ring-like distribution

$$
p=\frac{P I}{I}=\frac{\sqrt{Q^{2}+U^{2}+V^{2}}}{I}
$$

Band 4

$$
p=\frac{P I}{I}=\frac{\sqrt{Q^{2}+U^{2}+V^{2}}}{I}
$$

Double-peak distribution

Band 6

$$
p=\frac{P I}{I}=\frac{\sqrt{Q^{2}+U^{2}+V^{2}}}{I}
$$

Band 7a
Double-peak distribution
Band 7b

Spectral index α of Band 3-4, Band 4-5, Band 5-7a

Band 3-4

Band 4-5

Band 5-7b
$\alpha \sim 2$ at the center, while $\alpha \sim 3$ in the outer region

Discussion

Grain size from SED $\quad F_{v}=\left(B_{v}(T)-B_{v}\left(T_{b g}\right)\right)\left(1-e^{-\tau_{0}(v / 200 \mathrm{GHz})^{\beta}}\right) \Omega$

Central region

T	τ_{0}	β
$55 \pm 16 \mathrm{~K}$	0.8 ± 0.4	0.5 ± 0.1

Outer region

Grain size from SED

Grain size from polarization

	Wavelength $(\mu \mathrm{m})$	Center PF
Band 3	3,000	0.1%
Band 4	2,000	0.5%
Band 5	1,470	0.4%
Band 6	1,280	0.3%
Band 7a	870	0.4%
Band 7b	870	0.9%

Estimated grain size from polarization in Center: $70 \mu \mathrm{~m}(0.07 \mathrm{~mm})$

Grain size from polarization

	Wavelength $(\boldsymbol{\mu \mathrm { m })}$	Outer PF
Band 3	3,000	1.3%
Band 4	2,000	1.5%
Band 5	1,470	1.3%
Band 6	1,280	0.9%
Band 7a	870	0.6%
Band 7b	870	1.3%

Estimated grain size from polarization in outer region: $270 \boldsymbol{\mu m}(0.27 \mathrm{~mm})$

Discrepancy between SED and polarization

SED provided the sizes of $1-5 \mathrm{~mm}$.
Polarization fraction provided the sizes of $0.1-0.3 \mathrm{~mm}$
Possible reasons:

- Circular patterns cancel polarization at the center.
- Polarization may be more sensitive to surface smaller grains.
- PF model depends on dust properties (Yang \& Li 2020).

Summary

Summary

We reduced data of the Class I/II YSO HL Tau to study the usage of polarization. The main results are followings.

- Polarization direction appears circular patterns at Band 3\&4, alined to NE-SW at Band 5,6 and 7
- Polarization fraction map shows ring structure at Band 3\&4, double-peak structure at Band 6\&7a. (Weak in band 5\&7b)
- Spectral index is 2 (central), ~3 (outer region).
- Grain size estimated from polarization fractions is $70 \boldsymbol{\mu m}$ (central), 270 $\mu \mathrm{m}$ (outer region).
- Grain size estimated from SEDs is $4 \sim 5 \mathrm{~mm}$ (central), $1 \sim 2 \mathrm{~mm}$ (outer region).

Thanks!

