Polarization of HL Tau

Lee Deokhyeong, Moon Junyoung

supervised by Aso Yusuke

Contents

- 1. Introduction
- 2. Data Reduction
- 3. Results
- 4. Discussion
- 5. Summary

Introduction

Polarization Mechanisms in Young Stellar Objects

Observable polarization signals

Polarization intensity: PI = $\sqrt{(U^2+Q^2+V^2)}$

Polarization fraction: p = PI / I

Polarization direction: $\psi = 1/2 \arctan (U/Q)$

Spectral index α , β

Spectral index is related to dust properties, especially **size of grain**. Larger grain size gives smaller spectral index. (Draine, 2006)

$$F_{\nu} \approx F_{\nu_0} \left(\frac{\nu}{\nu_0}\right)^{\alpha}$$

$$F_{\nu} \approx \kappa_{\nu} B_{\nu}(T_d) \frac{M_T}{D^2} \quad \text{(optically thin)}$$

$$\approx \kappa_{\nu_0} \left(\frac{\nu}{\nu_0}\right)^{\beta} \frac{2kT_d}{c^2} \nu^2 \frac{M_T}{D^2}$$
therefore $\alpha \approx \beta + 2$. Kwon+'09

Large grains: Flux follows Rayleigh-Jeans law ($\propto \nu^2$), $\alpha \sim 2$, $\beta \sim 0$ Small grains: Flux follows Rayleigh scattering ($\propto \nu^4$), $\alpha \sim 4$, $\beta \sim 2$

Target HL Tau

HL Tauri is a Class I/II young stellar object in the constellation Taurus(황 소자리).

Distance: 140pc **RA**: 04h 31m 38.43s **Dec**: 18d 13m 57.12s

Very well studied in multiplewavelength polarized continuum emission using ALMA.

Data Reduction

Six measurement sets

	Frequency (GHz)	Robust	Beam Size† (" × ")	UV distance (kλ)	3 σ noise level (mJy/beam)
Band 3	97.5	-1.0	0.356×0.200	3.6 - 780	0.10
Band 4	145.0	0.5	0.312×0.260	15.0 - 1,400	0.50
Band 5	203.0	1.5	0.320×0.279	8.5 - 1,920	0.75
Band 6	233.0	0.5	0.321×0.232	10.0 - 1,800	3.5
Band 7a	343.5	-1.0	0.343×0.259	14.2 - 770	2.3
Band 7b	343.5	0.5	0.328×0.262	14.0 - 2,100	3.0

†This beam size is obtained with the common uv-distance range (15-770 k λ). We smoothed the images to change all the beam sizes to 0.36"x0.36".

Results

Intensity & Polarization angle map

Color: Stokes I (Jy/beam) Segment length ∝ PI

Intensity & Polarization angle map

Color: Stokes I (Jy/beam) Segment length ∝ PI

Intensity & Polarization angle map

Color: Stokes I (Jy/beam) Segment length \propto PI

Polarization Fraction

 $p = \frac{PI}{I} = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}$

Polarization Fraction

Spectral index α of Band 3-4, Band 4-5, Band 5-7a

 α ~2 at the center, while α ~3 in the outer region

Discussion

Grain size from SED $F_{\nu} = (B_{\nu}(T) - B_{\nu}(T_{bg}))(1 - e^{-\tau_0(\nu/200 \text{ GHz})^{\beta}})\Omega$

Grain size from polarization

Estimated grain size from polarization in Center: 70μ m(0.07mm)

Grain size from polarization

Estimated grain size from polarization in outer region: 270μ m(0.27mm)

Discrepancy between SED and polarization

SED provided the sizes of 1 - 5 mm. Polarization fraction provided the sizes of 0.1 - 0.3 mm

Possible reasons:

- Circular patterns cancel polarization at the center.
- Polarization may be more sensitive to surface smaller grains.
- PF model depends on dust properties (Yang & Li 2020).

Summary

Summary

We reduced data of the Class I/II YSO HL Tau to study the usage of polarization. The main results are followings.

- Polarization direction appears circular patterns at Band 3&4, alined to NE-SW at Band 5,6 and 7
- Polarization fraction map shows ring structure at Band 3&4, double-peak structure at Band 6&7a. (Weak in band 5&7b)
- Spectral index is 2 (central), ~3 (outer region).
- Grain size estimated from polarization fractions is 70 μ m (central), 270 μ m (outer region).
- Grain size estimated from SEDs is 4~5 mm (central), 1~2 mm (outer region).

Thanks!