Molecular line analysis to study the kinematics of the binary protostellar system L1551 IRS5

🤚 최강 Team 5 🤚

Spandan Choudhury, 강지현 강예원, 김영아, 임범후

- 1. Introduction
- 2. CASA Imaging progress
- 3. Spectral cubes and moment maps of CH3OH, DCN, H2S, SO2
- 4. Further discussion

L1551 IRS5

L1551 IRS5 is a protostellar envelope surrounding a binary protostar system at a distance of 147 \pm 5 pc. It consists of a 0.8 M_{\odot} primary (N component) and a 0.3 M_{\odot} secondary (S component). The separation of the binary is 50 AU.

Distance	147 рс
Right Ascension	04 ^h 31 ^m 34.077 ^s
Declination	18° 08′ 04.90″

https://en.wikipedia.org/wiki/L1551_IRS_5

Archive data

ALMA Science Archive data 2016.1.00209.S

$\Box \Leftrightarrow \leftrightarrow$	Project code 2016.1. ✓ ×	ALMA source name	RA	Dec	Band	Cont. sens.	Frequency support	↑ Release date	Publications	Ang. res.	Min. vel. res.
			h:m:s -	d:m:s 🕶		mJy/beam -				arcsec 🕶	km/s -
$\Box \Leftrightarrow \leftrightarrow \sim \boxtimes$	2016.1.00209.S	L1551_IRS_5	04:31:34.077	+18:08:04.900	6	0.2495	215.896233.197 GHz	2018-03-07	4	23.408	0.040
$\Box \Leftrightarrow \leftrightarrow \sim \boxtimes$	2016.1.00209.S	L1551_IRS_5	04:31:34.077	+18:08:04.900	6	0.5760	215.896233.198 GHz	2018-04-12	4	5.976	0.040
$\Box \Leftrightarrow \leftrightarrow \sim \boxtimes$	2016.1.00209.S	L1551_IRS_5	04:31:34.077	+18:08:04.900	6	0.0289	215.959233.135 GHz	2018-08-07	4	0.137	0.040
$\Box \Leftrightarrow \leftrightarrow \sim \boxtimes$	2016.1.00209.S	L1551_IRS_5	04:31:34.077	+18:08:04.900	6	0.0632	215.958233.136 GHz	2019-04-25	4	0.776	0.040

Compare the uniform weighting and natural weighting

Iteration Number

Compare the continuum cleaning images of different iteration numbers

niter	max [Jy/beam]	rms [Jy/beam]	dynamic range (=max/rms)	total flux [Jy]
500	1.33E-01	6.83E-04	1.95E+02	9.50E-01
1000	1.32E-01	5.67E-04	2.33E+02	8.70E-01
2000	1.32E-01	4.69E-04	2.81E+02	8.20E-01
5000	1.32E-01	2.85E-04	4.62E+02	7.70E-01
10000	1.32E-01	1.92E-04	6.86E+02	7.30E-01
50000	1.31E-01	1.69E-04	7.80E+02	7.00E-01
100000	1.32E-01	1.60E-04	8.25E+02	6.90E-01

Iteration Number

Find the proper iteration number using interactive mode

niter = 100

Masking

Compare the residual images with or without masking

Continuum image of L1551 IRS5

Continuum image of L1551 IRS5

1.058"

2.391"

Maximum recoverable scale : 8.813"

0.003

0.001

0.003

Spectral cubes

The number of channel: 25 Width of the each channel : 0.7km/s

Spectral cubes

The number of channel: 25 Width of the each channel : 0.7km/s

CH3OH

DCN

3. Spectral cubes and moment maps

Moment 0 (integrated intensity) map

Range of integration: 1 km/s - 11 km/s [system velocity $\approx 6 \text{km/s}$] Masking range > 3σ

3. Spectral cubes and moment maps

Moment 1 (velocity) map

Range of integration: 1km/s – 11km/s [system velocity \approx 6km/s Masking range > 3 σ

Moment 2 (velocity dispersion) map

Range of integration: 1 km/s - 11 km/s [system velocity $\approx 6 \text{km/s}$] Masking range > 3σ

Dust mass estimation

- Dust mass of specific regions could be estimated from continuum flux density

$$M_{dust} = \frac{f d^2}{\kappa B_{\nu}(T_{dust})},$$

$$Northern compact region$$

$$T_{dust} = 160K$$

$$M_{tot} = 5.1 \times 10^{-3} M_{sun}$$

$$Circumbinary disk$$

$$T_{dust} = 80K$$

$$M_{dust} = 1.4 \times 10^{-2} M_{sun}$$
Mera+2019

4. FURTHER DISCUSSION

Gas temperature estimation

- Line gaussian fitting of selected region
- Temperature could be estimated by

 $C_{rms} = \sqrt{rac{3RT}{M}}$

and we got T < 910K (upper limit), which is deviated from previous one. (T~80K)

SiO moment-zero (integrated intensity) map

- Very weak compared to other lines
- Divided dominant velocity components into blue & redshift (rest velocity ~ 6.5km)

SiO moment-zero (integrated intensity) map

Overlapping two velocity components, outflow along opposite direction could be seen.

SiO moment-zero (integrated intensity) map

PV diagram

H2S

DCN

SO2

CH3OH