ALMA simulation for proposals

Woojin Kwon

Korea Astronomy and Space Science Institute

2015 April 3

Why?

- Mock observations of ALMA
- Not necessary, however:
- Show whether your science can be done by ALMA
- Verify what you need for your science goals:
 e.g., which configurations

Comparison of different array configurations

http://casaguide.nrao.edu

Basics of Interferometry

- Interferometer data: uv visibility
 - Power corresponding to the correlation of the waves received at two antennas
 - FT relation with sky intensity
 - (u, v) coordinates

$$V(u,v) \rightleftarrows A_N(l,m)I(l,m).$$

$$S(u,v)V(u,v) \rightleftharpoons FT^{-1}[S(u,v)] * FT^{-1}[V(u,v)]$$

 $B_D(l,m) * [A_N(l,m)I(l,m)].$

Keywords
 uv coverage, uv distance,
 synthesized beam, primary beam...

$$V(u,v) \rightleftarrows A_N(l,m)I(l,m).$$

$$S(u,v)V(u,v) \rightleftharpoons FT^{-1}[S(u,v)] * FT^{-1}[V(u,v)]$$

 $B_D(l,m) * [A_N(l,m)I(l,m)].$

- Simulating interferometric data (visibilities)
 - sky intensity distribution: I(l,m)
 - 2. primary beam correction: $A_N(I,m) I(I,m)$
 - 3. FT
 - 4. Sampling in $V(u,v) \rightarrow S(u,v) V(u,v)$
- Interferometric data reduction
 - 1. data: S(u,v) V(u,v)
 - 2. IFT
 - 3. de-convolution of $B_D(l,m)$ to find $A_N(l,m)$ I(l,m)

Two approaches

- CASA simulation tools
- Observation support tool (OST)

EU ARC, University of Manchester

Web-based

http://almaost.jb.man.ac.uk

CASA 123

- Common Astronomy Software Applications http://casa.nrao.edu
- Install CASA version 4.3.1
- > casapy
 - : tasklist
 - : taskhelp
 - : inp(<task>)
 - : project = 'sim' (example of putting in a parameter value)

.

: go (or a task name)

CASA simulation tools

CASA version 4.3
 http://casaguides.nrao.edu/index.php?
 title=Simulating_Observations_in_CASA_4.3

- Simobserve generate visibilities
- Simanalyze produce a cleaned image
- (Simalma)
 particular cases with total power antennas

Caveats

- RMS noise should not be used for proposals
- 20% underestimates for both surface
 brightness and total flux in single dish maps

What you need

Possible starting points: e.g.,
 images taken at a different wavelength
 numerical simulation results
 knowledge on object size and total flux

Simobserve

```
CASA <32>: inp
-----> inp()
# simobserve :: visibility simulation task
                           'sim'
project
                                        # root prefix for output file names
                    = '30dor.fits'
skymodel
                                        # model image to observe
    inbright
                    = '0.06mJy/pixel'
                                           scale surface brightness of brightest pixel
                                            e.g. "1.2Jy/pixel"
    indirection
                    - 'J2000 10h00m00
                                      -40d00m00' # set new direction e.g. "J2000 19h00m00
                                            -40d00m00"
    incell
                    '0.15arcsec'
                                           set new cell/pixel size e.g. "0.1arcsec"
    incenter
                        '230GHz'
                                           set new frequency of center channel e.g.
                                            "89GHz" (required even for 2D model)
                          '2GHz'
    inwidth
                                           set new channel width e.g. "10MHz" (required
                                            even for 2D model)
complist
                                        # componentlist to observe
setpointings
                            True
    integration
                          '600s'
                                           integration (sampling) time
                                           "J2000 19h00m00 -40d00m00" or "" to center on
    direction
                                            model
                                           angular size of map or "" to cover model
    mapsize
    maptype
                          'ALMA'
                                           hexagonal, square (raster), ALMA, etc
    pointingspacing =
                                           spacing in between pointings or "0.25PB" or ""
                                            for ALMA default INT=lambda/D/sqrt(3),
                                            SD=lambda/D/3
obsmode
                           'int'
                                           observation mode to simulate
                                             [int(interferometer)|sd(singledish)|""(none)]
    antennalist
                    = 'alma.cycle3.1.cfg' #
                                             interferometer antenna position file
    refdate
                    = '2014/05/21'
                                           date of observation - not critical unless
                                            concatting simulations
    hourangle
                      'transit'
                                           hour angle of observation center e.g.
                                            "-3:00:00", "5h", "-4.5" (a number without
                                            units will be interpreted as hours), or
                                             "transit"
    totaltime
                         '7200s'
                                           total time of observation or number of
                                            repetitions
    caldirection
                                           pt source calibrator [experimental]
    calflux
                           '1Jy'
```

- Generate visibilities
- 30 Dor

```
thermalnoise
                     = 'tsys-atm'
                                             add thermal
     user_pwv
                              0.5
                                             Precipitable
     t_ground
                            269.0
                                             ambient temp
     seed
                            11111
                                             random numbe
                              0.0
                                             cross polari
leakage
araphics
                            'both'
                                             display grap
                                              [screen|fil
                            False
verbose
overwrite
                             True
                                            overwrite fi
CASA <29>:
```

Outputs: sim.alma.cycle3.1.ms/ sim.alma.cycle3.1.noisy.ms/ sim.alma.cycle3.1.observe.png sim.alma.cycle3.1.ptg.txt sim.alma.cycle3.1.quick.psf/ sim.alma.cycle3.1.simobserve.last sim.alma.cycle3.1.skymodel/ sim.alma.cycle3.1.skymodel.flat/ sim.alma.cycle3.1.skymodel.png

Simanalyze

```
CASA <46>: inp
----> inp()
# simanalyze :: image and analyze measurement sets created with simobserve
project
                           'sim'
                                        # root prefix for output file names
image
                            True
                                        # (re)image $project.*.ms to $project.image
                                             # Measurement Set(s) to image
    vis
                      'sim.alma.cycle3.1.ms'
     modelimage
                                        # lower resolution prior image to use in clean
                                            e.g. existing total power image
     imsize
                               Ø
                                           output image size in pixels (x,y) or 0 to match
     imdirection
                                           set output image direction, (otherwise center
                                            on the model)
     cel1
                    = '0.15arcsec'
                                           cell size with units e.g. "10arcsec" or "" to
                                            equal model
     interactive
                           False
                                           interactive clean? (make sure to set niter>0
                                            also)
                               0
                                           maximum number of iterations (0 for dirty
     niter
                                            image)
     threshold
                        '0.1mJy'
                                           flux level (+units) to stop cleaning
                                           weighting to apply to visibilities. briggs
     weighting
                       'natural'
                                            will use robust=0.5
                              Cleanbox(es), mask image(s), region(s), or a
     mask
                                            level
     outertaper
                              uv-taper on outer baselines in uv-plane
                            True
                                           correct the output of synthesis images for
     pbcor
                                            primary beam response?
                             Ί.
                                           Stokes params to image
     stokes
     featherimage
                                           image (e.g. total power) to feather with new
                                            image
analyze
                            True
                                           (only first 6 selected outputs will be
                                            displayed)
     showuv
                            True
                                           display uv coverage
                                           display synthesized (dirty) beam (ignored in
     showpsf
                            True
                                            single dish simulation)
     showmodel
                            True
                                           display sky model at original resolution
     showconvolved
                           False
                                           display sky model convolved with output clean
                                            beam
     showclean
                            True
                                           display the synthesized image
     showresidual
                           False
                                           display the clean residual image (ignored in
                                            single dish simulation)
```

Generate
 (cleaned) image

```
showdifference =
                                             display differen
                             True
                                              and input model
                                              output clean be
                                             display fidelity
     showfidelity
                             True
                                             display graphics
graphics
                            'both'
                                              [screen|file|bo
verbose
                            False
overwrite
                             True
                                             overwrite files
dryrun
                            False
                                             only print infor
                                              interfermetric
```

logfile

CASA <47>:

- Outputs: uv coverage, dirty beam, model,
 (clean) image, difference, fidelity
- viewer

Comparison of cases with and without noise

OST

- Web-based
- Results can be delayed depending on job load
- http://almaost.jb.man.ac.uk

ALMA Observation Support Tool

Version 3.0

OST NEWS HELP QUEUE LIBRARY ALMA HELPDESH	· ·
Updated: Important information on the new OST version.	
Array Setup:	
Instrument: ALMA	Select the desired ALMA antenna configuration.
Sky Setup:	
Source model: OST Library: Central point source ‡	Choose a library source model or supply your own.
Upload: Choose File No file chosen	You may upload your own model here (max 10MB).
Declination: -35d00m00.0s	Ensure correct formatting of this string (+/-00d00m00.0s).
Image peak / point flux in mJy ‡ 0.0	Rescale the image data with respect to new peak value.
	Set to 0.0 for no rescaling of source model.
Observation Setup:	
Observing mode: Ospectral Ocontinuum	Spectral or continuum observations?
Central frequency in GHz: 93.7	The value entered must be within an ALMA band.
Bandwidth in MHz ÷: 32	Select the total bandwidth for continuum observations.
	Enter 7.5 GHz to select ALMA recommend full continuum setup.
Number of polarizations: 2 ÷	This affects the noise in the final map.
Required resolution in arcseconds: 1.0	OST will choose array config based on this value if instrument is set to ALMA.
Pointing strategy: Mosaic ÷	Selecting single will apply primary beam attenuation.
On-source time in hours 💠 : 3	Per pointing for mosaics.
Start hour angle: 0.0	Deviation of start of observation from transit.
Number of visits: 1	How many times the observation is repeated.
Include cycling to phase calibrator?:	This affects the <i>uv</i> -coverage of your simulation.
Atmospheric Corruption:	
Atmospheric conditions: PWV = 0.472 mm (1st Octile) ‡	Determines level of noise due to water vapour.
Imaging Product:	
Imaging weights: Natural +	This allows a resolution / sensitivity trade-off.
Perform deconvolution?: No (Return dirty image) ‡	Apply the CLEAN algorithm to deconvolve the image.
Output image format: FITS \$	CASA format images are returned as a tar file
Submission:	
Your email address is essential!	Submit

30 Dor

Job ID: 20150402023018ygikV / Submitted by: wkwon@kasi.re.kr

Messages

The brightness unit of your uploaded sky model was not recognised and has been adjusted to Jy/pixel.

You should carefully check that your sky model remains sensible, and consider tuning the rescaling value to compensate for any discrepancies.

- · The peak pixel of your model image has been rescaled to 0.06 mJy
- The maximum image dimension that can be processed is 2048 pixels, thus a portion of the model may be outside of your simulated map.

Consider relaxing the resolution demands or simulating a smaller patch of sky.

· Your simulated observation requires more than 30 pointing directions. To prevent clutter these have not been plotted on the images below.

Overview

Array configuration:

Click thumbnails to view full-size images. Left: linear colour scale, right: with histogram equalization.

ALMA out02

Source model:	30dor.fits	
Input image:	0 0000000 0 0 0000000 0 0 0000000 0 0 0000	
Maximum elevation:	72.88 degrees	
Central frequency:	230 GHz (ALMA Band 6)	
Total Bandwidth:	7.5 GHz	
Track length:	2 hours × 1.0 visits	
Hexagonal mosaic pointings :	1817 required to cover requested sky area with uniform sensitivity	
System temperature:	Tsys = 83.1356846157 K	
PWV:	0.475 mm	
Theoretical RMS noise:	6.25586380064e-06 Jy (in naturally-weighted map)	
Restoring beam (resolution):	Major axis = 1.68 arcsec, minor axis = 1.528 arcsec, PA = 92.712 deg	
For use with CASA simdata		
Input sky model:	Download processed model in FITS format	
Download CASA simobserve/analyze file:	2015040203018ygikV.simdata.last	
Download pointing file:	20150402023018ygikV.ptg.bd	

NGC 1333

Elevation vs time:

Job ID: 20150402103725KcYKi / Submitted by: wkwon@kasi.re.kr

Messages

The peak pixel of your model image has been rescaled to 0.06 mJy

Overview

Click thumbnails to view full-size images. Left: linear colour scale, right: with histogram equalization.

 Array configuration:
 ALMA out10

 Source model:
 NGC 1333 at 8 kpc

Input image:

Maximum elevation:	77.88 degrees
Central frequency:	93.7 GHz (ALMA Band 3)
Total Bandwidth:	7.5 GHz
Track length:	3 hours x 1.0 visits
Hexagonal mosaic pointings :	2 required to cover requested sky area with uniform sensitivity
System temperature:	Tsys = 67.8855666394 K
PWV:	0.475 mm
Theoretical RMS noise:	3.9840730481e-06 Jy (in naturally-weighted map)
Restoring beam (resolution):	Major axis = 1.199 arcsec, minor axis = 1.108 arcsec, PA = 62.99 deg
For use with CASA simdata	
Input sky model:	Download processed model in FITS format
Download CASA simobserve/analyze file:	20150402103725KcYKi.simdata.last
Download pointing file:	20150402103725KcYKi,ptg.txt

Summary

- ALMA simulator
- CASA simulation tasks/tools

```
http://casa.nrao.edu
```

http://casaguides.nrao.edu/index.php?title=Simulating_Observations_in_CASA_4.3

simobserve

simanalyze

(simalma)

Observation Support Tool

http://almaost.jb.man.ac.uk