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2015), the Class 0 disk candidate of NGC 1333 IRAS 4A
(Cox et al. 2015), the Herbig AE late-stage protoplane-
tary disk HD 142527 (Kataoka et al. 2016), and the disk
candidate of the high-mass protostar Cepheus A HW2
(Fernández-López et al. 2016). Polarization toward disks
have also been detected at mid-infrared wavelengths of
8.7, 10.3, and 12.5µm (Li et al. 2016, 2017). However,
polarized emission at mid-infrared wavelengths can occur
due to absorption, emission, and sometimes scattering,
causing di�culty in interpreting the polarization mor-
phology.
Despite these detections, the polarization morpholo-

gies usually were not consistent with what would be ex-
pected from magnetically aligned dust grains. In particu-
lar, Stephens et al. (2014) used the Combined Array for
Research in Millimeter-wave Astronomy (CARMA) to
measure the 1.3 mm polarization morphology in HL Tau.
The morphology was inconsistent with grains aligned
with the commonly-expected toroidal magnetic fields
(polarization/E-field vectors distributed radially in the
disk). Instead, the E-vectors were oriented more or less
along the minor axis of the disk. Kataoka et al. (2015,
2016) and Yang et al. (2016) suggested that the polariza-
tion morphology is actually consistent with that expected
from self-scattering (also see Pohl et al. 2016; Yang et
al. 2017). Indeed, several disks where polarization is
detected show consistency with the polarization mor-
phology expected from self-scattering rather than grains
aligned with the magnetic field. However, except for
the ALMA observations of HD 142527 (Kataoka et al.
2016) and HL Tau (Kataoka et al. 2017), the published
observations are too coarse to resolve more than a few
independent beams across the disk, making it di�cult
to distinguish between scattering and other polarization
mechanisms.
The high-resolution ALMA observations of HD 142527

by Kataoka et al. (2016) resolved polarization for many
10s of independent resolution elements across the disk.
The polarization was radial throughout most of the disk,
which is expected for grains aligned with a toroidal field,
but toward the edges the morphology changed from ra-
dial to azimuthal, which is more consistent with scatter-
ing. Models in Kataoka et al. (2016) found that scatter-
ing can broadly reproduce the features observed in parts
of the disk – especially where the polarization orienta-
tions change sharply – but not everywhere. A complete
understanding of this interesting case is still missing.
HL Tau is one of the brightest Class I/II in the sky at

(sub)millimeter wavelengths, and thus the polarization
morphology can be determined at high resolution with
reasonable integration times. Kataoka et al. (2017) fol-
lowed up on the Stephens et al. (2014) observations with
3mm observations of HL Tau. Surprisingly, they found
that the polarization morphology was azimuthal, which
suggests grains aligned with their long axes perpendicu-
lar to the radiation field, as predicted by Tazaki et al.
(2017). Henceforth, we will call this grain alignment
mechanism “alignment with the radiation anisotropy.”
The very di↵erent polarization morphologies observed

at 1.3mm (0.006 resolution, Stephens et al. 2014) and 3mm
(0.004 resolution, Kataoka et al. 2017) suggest that the
morphology of the polarization emission is strongly de-
pendent on the wavelength. This Letter presents ALMA
observations at both 1.3 mm and 870µm at resolutions

Figure 1. ALMA polarimetric observations at 3mm (top,
Kataoka et al. 2017), 1.3mm (middle), and 870µm (bottom),
where the red vectors show the >3� polarization morphology (i.e.,
vectors have not been rotated). Vector lengths are linearly propor-
tional to P . The color scale shows the polarized intensity, which is
masked to only show 3� detections. Stokes I contours in each panel
are shown for [3, 10, 25, 50, 100, 200, 325, 500, 750, 1000]⇥�I , where
�I is 44, 154, and 460µJy bm�1 for 3mm, 1.3mm, and 870µm,
respectively.

of 0.003 and 0.004, respectively.

essential. The wavelength dependence of the polarization
fraction is not strong in the case of the grain alignment,
while it is strong in the case of the self-scattering because
the scattering-induced polarization is efficient only when the
maximum grain size is around l p2 where λ is the
wavelengths (Kataoka et al. 2015).

To obtain the wavelength-dependent polarimetric images, we
observe the HL Tau disk with the Atacama Large Millimeter/
submillimeter Array (ALMA) using Band 3. HL Tau is a young
star in the Taurus molecular cloud with a distance of 140pc
(Rebull et al. 2004). The circumstellar disk is around in
∼100 au scale (Kwon et al. 2011). The disk has several ring
and gap structures with tens of au scales (ALMA Partnership
et al. 2015). The observed band corresponds to wavelengths of
3.1 mm, which is sufficiently longer than the previous CARMA
polarimetric observations at 1.3 mm (Stephens et al. 2014).

2. Observations

HL Tau was observed by ALMA on 2016 October 12,
during its Cycle 4 operation (2016.1.00115.S, PI: A. Kataoka).
The antenna configuration was C40-6, and 41 antennas were
operating. The correlator processed four spectral windows
centered at 90.5, 92.5, 102.5, and 104.5 GHz with a bandwidth
of 1.75 GHz each. The bandpass, amplitude, and phase were
calibrated by observations of J0510+1800, J0423-0120, and
J0431+1731, respectively, and the polarization calibration was
performed by observations of J0510+1800. The raw data were
reduced by the EA-ARC staff.

We further perform the iterative CLEAN deconvolution
imaging with self-calibration to improve the image quality. We
employ the briggs weighting with the robust parameter of 0.5
and the multiscale option with scale parameters of 0, 0.3, and
0.9 arcsec. The beam size of the final product is ´ ´ ´0. 45 0. 29,
corresponding to ~ ´63 41 au at a distance of 140 pc to the
target. The rms for Stokes I, Q, and Uis 9.6, 6.9, and 6.9 μJy,
respectively.

3. Results

The top panel of Figure 1 shows the polarized intensity in
colorscale overlaid with polarization vectors,9 and the contour
represents the continuum emission. The bottom panel of
Figure 1 shows the polarization fraction in colorscale, and the
others are the same as the top panel. Due to the lower spatial
resolution than the long baseline campaign (ALMA Partnership
et al. 2015), the multiple-ring and multiple-gap structure of the
continuum is not resolved. The total flux density is 75.1 mJy,
which is consistent with the previous ALMA observations with
Band 3 (74.3 mJy; ALMA Partnership et al. 2015).

We successfully detect the ring-like polarized emission at
3.1 mm. The polarized intensity has a peak of 145 μJy/beam,
which corresponds to a 21σ detection with the rms of 6.9μJy.
The peak of the polarized intensity is not located at the central
star but on the ring. We see three blobs on the ring, but this
may be due to the interferometric effects. The polarized
intensity at the location of the central star is lower than the
other regions. We interpret this structure as a beam dilution of
the central region where polarization is expected to be

azimuthal and thus cancels out each other. The polarization
fraction is around 1.8% on the ring.
The flux densities of the entire disk are −39.7 μJy for Stokes

Q and −40.6 μJy for Stokes U. Therefore, the integrated
polarized intensity is s= + - =Q UPI 56.42 2

PI
2 μJy.

Dividing the total polarized intensity by the total Stokes I,
we obtain 0.08% for the total polarization fraction. The
instrumental polarization contamination of the ALMA inter-
ferometers is the polarization fraction of 0.1% for a point
source in the center of the field or 0.3% within up to the inner
1/3 of the FWHM (see the technical handbook of ALMA;
further discussion is found in Nagai et al. 2016). The derived
polarization fraction of the integrated flux corresponds to the
case of the point source. Therefore, the upper limit of the
integrated polarization fraction of the HL Tau disk at 3.1 mm
by our observations is 0.1%. The low total polarization fraction
means that we could not have detected polarization if we had
not resolved the target.

Figure 1. ALMA Band 3 observations of the HL Tau disk. The wavelength is
3.1 mm. The top panel shows the polarized intensity in colorscale, the
polarization direction as red vectors, and the continuum intensity as the solid
contour. The vectors are shown where the polarized intensity is larger than
s5 PI. The contours correspond to ´( )10, 20, 40, 80, 160, 320, 640, 1280 the
rms of 9.6 μJy. The bottom panel shows that the polarization fraction in
colorscale, polarization vectors in blue, and the same continuum intensity
contours as the top.

9 We plot the polarization vectors not scaling with the polarization fraction
but written with the same length because this allows for the polarization
morphology to be more obvious. However, the reliability does not depend on
the polarization fraction, but rather on the polarized intensity.
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where r is the orbital radius. The mass of the central star is
taken to be M1.9 :. The adopted values are 0.6 g cm0

2S = - ,
r 173d = AU, w 27d = AU, and h r19.8 AU 173 AUg

1.5( )= ,
which corresponds to the isothermal disk of 36 K. The dust
mass of the disk is M5.0 10 3´ -

:. We confirm that the results
in the case of a power-law temperature distribution do not show
any significant difference from the constant temperature
adopted here (see Appendix B for more details).

These choices of parameters are motivated by recent results
of the modeling of HD 142527 (Muto et al.), although we use
different dust models. In addition, the dust density is assumed
to be zero if R 70< AU or if R 300> AU. We assume that
the target is at 140 pc and thus 1 arcsec = 140 AU. Note
that the optical depth at the peak is 0 abst k= S ´ =
0.6 g cm 0.51 cm g 0.312 2 1´ =- - . Thus, this object is opti-
cally thin.

Figure 7 shows the intensity, the polarized intensity, and the
polarization degree overlaid with polarization vectors. The
polarization degree has a double-ring structure. The polariza-
tion vectors are orientated to totally opposite directions in the
two rings. The vectors in the outer polarization ring are in the
azimuthal direction. This is because the background thermal
emission has a strong radial gradient at the location of the outer

polarized ring. This corresponds to point B in Figure 6. By
contrast, the vectors are in the radial direction in the inner
polarization ring. This is due to the net flux from the azimuthal
direction being larger than the net flux in the radial direction.
This corresponds to point A in Figure 6. This double-ring
pattern is a unique feature of the polarization due to dust
scattering, and thus this will be a clue to distinguish the
polarization mechanism.

3.2. Polarization from Lopsided Protoplanetary Disks

We now calculate the expected polarization from a lopsided
disk. To mimic the lopsided disk structure observed with
ALMA (e.g., Fukagawa et al. 2013), we further add an
azimuthally Gaussian distribution (e.g., Pérez et al. 2014) as
follows:
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Since the broad range of azimuthal contrast of dust
continuum emission has been reported so far (1.5 for
SAO206462, Pérez et al. 2014; 24 for HD 142527, Fukagawa
et al. 2013; 130 for IRS 48, van der Marel et al. 2013), we
consider two cases: model A for low azimuthal contrast and
model B for high azimuthal contrast. In model A, we use the

Figure 7. Same as Figure 5, but for the case of the ring-shaped protoplanetary disk.

Figure 8. Same as Figure 5, but for model A in the case of the lopsided protoplanetary disk. The object is optically thin everywhere.
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J. Menu et al.: TW Hya: multiwavelength interferometry of a transition disk

Fig. 5. Comparison of the SED data, the MIDI 50-m visibility profile, the deprojected SMA visibilities, and the deprojected VLA visibilities with
the reimplemented model data. Along with the fully reimplemented Calvet et al. (2002) model SED, we show the SED consisting of the sum of
the contributions of the inner-disk and the outer-disk SED, for which the radiative transfer is done separately.

relatively well, but the new data reduction has lowered the vis-
ibilities at wavelengths above 10 µm. This largely explains the
departure.

In the sub-mm regime measured by SMA, the Andrews
model is superior, well reproducing the visibility lobes from
short to long baselines (Fig. 5). The outer disk in the other
two models is much larger (Rout = 140 AU vs. 60 AU for the
Andrews model), explaining the steeper drop in visibility am-
plitude at short baselines. Clearly, the Andrews model was de-
signed to fit the SMA data, and we accurately reimplemented the
original model.

Finally, none of the three model reimplementations can re-
produce the VLA 9-mm data. For the Ratzka and the Andrews
model, the lack of mm-emission (seen in the SED) translates
into a visibility level much lower than the one observed. In the
Calvet case, we should be more careful in making conclusions.
In principle, the original Calvet model should agree to some
extent with the mm-visibilities, since this model (in a slightly
adapted version) was shown to agree with the original VLA data
of TW Hya (see Hughes et al. 2007). However, we already in-
dicated in Sect. 3.4 that the signal-to-noise of those data was
much lower than that of the new VLA data presented here.
The new data thus put new constraints on the models, which
were not available before, and could therefore explain possible

departures. However, we believe most of the disagreement be-
tween our model reimplementation and the mm-data to be re-
lated to the intrinsic model characteristics. Using our full Monte
Carlo radiative transfer implementation of the Calvet model, we
were unable to obtain similar mm-visibility profiles as the origi-
nal model. Irrespective of the quality of the previous and the new
data, it seems thus impossible to reproduce the bright inner rim
in the original semi-analytical model in Hughes et al. (2007).

5.5. Essential features

The results of the model reimplemenation can now be interpreted
in terms of a few essential features which need to be investigated
in detail.

Different model philosophies. That di↵erent models with
strong structural di↵erences reproduce the SED (to some extent)
reconfirms that SED modeling is at least partly degenerate. In
particular, it does not allow the distinction between two di↵er-
ent model “philosophies”: a large-gap disk with a 10-µm excess
coming from an optically thin inner region (Calvet and Andrews
model), or a small-gap disk with its own silicate feature, with
some extra continuum-opacity source inside (Ratzka model).
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• TW Hya (Mstar = 0.6 M⊙, Teff = 4000 K)

SED of a protoplanetary disk

Menu et al. 2014
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can be
probed by the various techniques. The axis shows the logarithmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

with respect to the gas. The force exerted on them depends
not only on the relative motion between gas and dust, but
also on the particle size: small particles that are observable
at up to cm wavelength can quite safely be assumed to be
smaller than the mean free path of the gas molecules and are
thus in the Epstein regime. If the particles are larger than
about the mean free path of the gas molecules, a flow struc-
ture develops around the dust particle and the drag force is
said to be in the Stokes drag regime (Whipple, 1972; Wei-
denschilling, 1977). Large particles in the inner few AU of
the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g. Birnstiel
et al., 2010a; Laibe et al., 2012; Okuzumi et al., 2012). An
often used quantity is the stopping time, or friction time,
which is the characteristic time scale for the acceleration or
deceleration of the dust particles ⌧

s

= mv/F , where m
and v are the particle mass and velocity, and F is the drag
force. Even more useful is the concept of the Stokes num-
ber, which in this context is defined as

St = ⌦

K

⌧
s

, (1)

a dimensionless number, which relates the stopping time to
the orbital period ⌦

K

. The concept of the Stokes number is
useful because particles of different shapes, sizes, or com-
position, or in a different environment have identical aero-
dynamical behavior if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important
implications, the first of which, radial drift, was realized
by Whipple (1972), Adachi et al. (1976), and by Weiden-
schilling (1977): an orbiting parcel of gas is in a force bal-
ance between gravitational, centrifugal, and pressure forces.
The pressure gradient is generally pointing outward because
densities and temperatures are higher in the inner disk.
This additional pressure support results is a slightly sub-
Keplerian orbital velocity for the gas. In contrast, a freely
orbiting dust particle feels only centrifugal forces and grav-
ity, and should therefore be in a Keplerian orbit. This slight
velocity difference between gas and a free floating dust par-
ticle thus causes an efficient deceleration of the dust par-
ticle, once embedded in the gaseous disk. Consequently,
the particle looses angular momentum and spirals towards
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• The millimeter emission is thermal dust emission from the disk. 

• How can we polarize the thermal dust emission?
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1. Alignment of elongated dust grains with magnetic fields
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2. The self-scattering of thermal dust emission 
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3. Alignment of elongated dust grains with radiation fields
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Dust is big in disks
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The circumstellar disk HD169142: gas, dust and planets acting in concert? 5

Figure 1. Left: J-band azimuthally polarized intensity image Q� in logarithmic scale for better visualization. Right: Q� ⇥ r2

in linear scale with annotations for the gap and ring structures. Each image pixel is multiplied with the square of its distance
to the star, r2, to compensate for the stellar illumination drop-o↵ with radius. All flux scales are normalized to half of the
brightest pixel along the inner ring. The region masked by the coronagraph is indicated by the gray circle. North is up, East
points towards left.

Figure 2. Left: zoom-in on the central 0.003 of the J-band Q� ⇥ r2 image. Right: polar map of the Q� ⇥ r2 image. The flux
scales are normalized to half of the brightest pixel along the ring. The horizontal dashed line indicates a radius of 0.0018.

with �, the position angle of the location of interest
(x, y) with respect to the star location. In this coordi-
nate system, the azimuthally polarized flux appears as
a positive signal in the Q� image, whereas the U� image
remains free of disk signal and can be used as an esti-
mate of the residual noise in the Q� image (Schmid et al.
2006). This is only valid for disks with face-on geome-
try since multiple scattering e↵ects in inclined disks can
cause a considerable physical signal in U� (e.g., TCha:
Pohl et al. 2017). The correction for instrumental po-

larization is done using a U� minimization, by subtract-
ing scaled versions of the total intensity frame from the
Stokes Q and U frames. The final data images were cor-
rected for the true North (by rotating them by 1.775� in
the counterclockwise direction, Maire et al. 2016). We
do not attempt to perform an absolute flux calibration
of our images due to the inherent problems with mea-
suring flux in PDI images.

3. POLARIZED INTENSITY IMAGES

example (face-on, PI)

Pohl et al. 2017
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self-scattering in an inclined disk
2802

H
.Yang

etal.

based
m

ostly
on

C
A

R
M

A
observations

at1.3
and

2.7
m

m
.Itis

in
agreem

entw
ith

the
spatially

averaged
value

obtained
from

A
L

M
A

observations
from

0.87
to

2.9
m

m
(A

L
M

A
Partnership:

B
rogan

etal.2015).T
his

value
is

significantly
low

er
than

the
typicalISM

value
of

β
∼

1.5–2.
T

he
difference

is
usually

taken
as

evidence
for

grain
grow

th
to

m
illim

etre
size

or
larger

(Testietal.2014),al-
though

other
interpretations

are
possible.For

exam
ple,R

iccietal.
(2012)show

ed
thata

value
of

β
∼

1
orlow

ercan
be

obtained
w

ith-
outm

m
/cm

-sized
grains

if
partof

the
disc

is
optically

thick.Som
e

supportforthis
possibility

is
provided

by
the

spatially
resolved

dis-
tribution

of
β

derived
from

the
A

L
M

A
data,w

hich
show

s
β

∼
0

indicative
ofoptically

thick
em

ission
atthe

centralcontinuum
peak

and
tw

o
rings

(B
1

and
B

6,A
L

M
A

Partnership:B
rogan

etal.2015,
see

their
fig.

3).
A

nother
possibility

is
that

the
index

β
is

sensi-
tive

to
not

only
the

size
but

also
the

shape
of

the
grains.

Indeed,
V

erhoeff
et

al.
(2011)

w
ere

able
to

reproduce
the

spectral
energy

distribution
(SE

D
)

of
the

disc
of

H
D

142527
(w

ith
β

∼
1

in
the

m
illim

etre
regim

e)w
ith

irregulargrains
ofsizes

up
to

only
2.5

µ
m

;
the

grain
shape

w
as

treated
w

ith
the

distribution
of

hollow
spheres

(M
in,H

ovenier&
de

K
oter2005).T

he
grains

inferred
in

ourm
odel

of
dustscattering-induced

polarization
for

the
H

L
Tau

disc
have

a
significantly

largerm
axim

um
size

(ofthe
orderoftens

ofm
icrons).

T
hey

m
ay

stillbe
able

to
reproduce

the
observed

(averaged)opacity
spectralindex

of
β

∼
0.73

if
the

grains
are

irregular
and/or

partof
the

disc
is

optically
thick.D

etailed
exploration

ofthis
possibility

is
beyond

the
scope

ofthe
presentw

ork.
If

large,
m

m
/cm

-sized,
grains

are
responsible

for
the

relatively
low

value
of

β
observed

in
the

H
L

Tau
disc,

it
is

natural
to

ask
w

hether
they

can
produce

a
polarization

pattern
that

m
atches

the
observed

one
through

scattering.Itis
unlikely,because

the
key

to
producing

the
observed

pattern
is

the
polarization

degree
of

the
scattered

lightpeaking
near

90
◦

(as
in

the
R

ayleigh
lim

it),and
this

requirem
entis

notsatisfied
for

m
m

/cm
-sized

grains.For
exam

ple,
forthe

grain
m

odeladopted
by

K
ataoka

etal.(2015a),the
polariza-

tion
degree

(defined
asthe

ratio
ofthe

tw
o

elem
entsin

the
scattering

m
atrix,−

Z
12 /Z

11 ,w
hich

is
essentially

the
polarization

fraction
but

can
be

either
positive

or
negative)

is
nearly

zero
at0.87

m
m

for
all

scattering
angles

exceptaround
135

◦,w
here

itreaches
a

(negative)
‘peak’

value
of∼

−
0.2

for
a

m
ax

=
1

m
m

and
1

cm
(see

the
right

paneloftheirfig.2).T
he

negative
value

isknow
n

asthe
polarization

reversal(e.g.M
urakaw

a
2010;K

irchschlager&
W

olf2014)w
hich,

together
w

ith
the

shiftof
the

polarization
‘peak’

aw
ay

from
90

◦,is
expected

to
produce

a
polarization

pattern
very

differentfrom
the

R
ayleigh

scattering
case.

A
s

an
illustration,w

e
repeat

the
com

putation
of

the
scattering-

induced
polarization

at
λ

=
1.3

m
m

in
Section

3,butw
ith

an
M

R
N

-
type

pow
er-law

size
distribution

up
to

a
m

ax =
4

m
m

(instead
of

72
µ

m
),using

the
dustm

odelofK
ataoka

etal.(2015a)and
M

ie
theory.

T
he

m
axim

um
grain

size
is

chosen
such

that
a

m
ax

≈
3
λ,w

hich
is

roughly
the

m
inim

um
value

required
to

yield
an

opacity
spectral

index
of

β
∼

1
according

to
D

raine
(2006).

T
he

distribution
of

the
polarization

degree
w

ith
scattering

angle
in

this
case

is
show

n
in

Fig.
6.

It
is

very
sim

ilar
to

that
obtained

by
K

ataoka
et

al.
at

0.87
m

m
,

except
that

the
‘peak’

is
slightly

low
er

(−
0.17)

and
is

shifted
to

a
slightly

sm
allerangle

of∼
130

◦.
In

Fig.
7,

w
e

plot
the

distribution
of

the
polarized

intensity
together

w
ith

polarization
vectors

for
the

large
grain

case
of

a
m

ax
=

4
m

m
.

T
here

are
several

features
that

are
w

orth
noting.

First,
unlike

the
R

ayleigh
scattering

case,
the

polarized
intensity

is
no

longer
sym

m
etric

w
ith

respectto
the

m
ajor

axis.T
his

is
be-

cause
large,m

m
/cm

-sized,grains
preferentially

scatter
lightin

the
forw

ard
direction

(e.g.B
ohren

&
H

uffm
an

1983),m
aking

the
side

F
igure

7.
Scattering-induced

polarization
by

large
grains.

A
s

in
Fig.

5,
plotted

are
the

polarized
intensity

(colour
m

ap)
and

polarization
vectors

(line
segm

ents,w
ith

length
proportionalto

the
polarization

fraction).N
ote

the
strong

asym
m

etry
w

ith
respect

to
the

m
ajor

axis
in

both
the

polarized
intensity

and
the

polarization
vectors.T

he
polarization

along
the

m
ajoraxis

in
the

centralregion
is

due
to

polarization
reversal,w

hich
m

ay
be

a
robust

indicator
of

scattering
by

large,m
m

/cm
-sized,grains.T

he
near

side
of

the
disc

is
on

the
right.

of
the

disc
closer

to
the

observer
(the

righthalf)
brighter.T

he
po-

larization
fraction

is,
how

ever,
higher

on
the

far
side

(especially
tow

ards
the

outer
partof

the
disc)

because
the

polarization
degree

of
the

scattered
light

is
higher

for
backw

ard
scattering

than
for

forw
ard

scattering
(see

Fig.
6).

T
he

m
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striking
difference

be-
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case
and

the
R

ayleigh
scattering

case
show

n
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Fig.
5

lies
in

the
polarization

direction.
T

he
difference
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es

from
the

polarization
reversalin

the
large

grain
case,w
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an
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(or

face-on)
polarization

direction
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radial

(as
opposed

to
azim

uthal)
direction

and
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inclination-induced
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m
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m
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axis.T
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interplay
betw

een
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and
inclination-induced
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leads
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directions
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high

polarized
intensity

(the
m

osteasily
observable

part)
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pletely
different

from
those

observed
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H
L

Tau
(see

Fig.1).
W

e
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therefore
left

w
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an
interesting

conundrum
.

T
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po-
larization

pattern
in
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H

L
Tau

disc
is

suggestive
of

R
ayleigh

scattering
by

relatively
sm

alldustgrains
(although

stillm
uch

larger
than

the
typical

ISM
grains),

but
such

grains
m

ay
have

difficulty
reproducing

the
observed

opacity
spectralindex

β
(!

1).T
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index
can

be
reproduced

m
ore

easily
w

ith
larger,

m
m

/cm
-sized,

grains,
butitis

difficultto
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the
observed

polarization
pattern

w
ith
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grains

through
scattering.Itis

conceivable
thatthere

are
tw

o
populations

of
dust

grains,
w

ith
one

responsible
for

polarization,
the

other
for

β
.T

he
tw

o
populations

do
nothave

to
be

located
co-

spatially
in
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disc;

for
exam

ple,large
grains
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for

the
bulk

of
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unpolarized
continuum

(and
thus

β
)

m
ay

have
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close
to

the
m

id-plane,
w

hereas
sm

aller
grains

that
dom

inate
the

polarized
m

illim
etre

radiation
m

ay
rem
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floating

higherup
above

the
m

id-plane
(e.g.D

ullem
ond

&
D
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2004;Tanaka,H
im

eno
&

Ida
2005;B

alsara
etal.2009).Ifthisspeculation

turnsoutcorrect,
polarized

em
ission
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m
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etre

w
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a

pow
erful

probe
ofnotonly

grain
grow

th,butalso
the

expected
verticalstratification

of
grain

sizes,especially
in

conjunction
w
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observations

of
opti-

cal/IR
polarization,w

hich
probe

even
sm

aller,m
icron-sized,grains

thatare
higherup

stillabove
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disc
m
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Conditions of dust grains for polarization
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Grain size constraints by polarization

Polarization of protoplanetary disks 3
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Fig. 3.— The polarization P at the scattering angle of 90� and the albedo ! = 
sca

/(
abs

+ 
sca

) as a function of maximum grain size.
The size distribution is assumed to have power law of n(a) / a�3.5. The wavelengths are assumed to be 1.3 mm for the left panel and
870 µm for the right panel. The arrows indicate the maximum grain size which has the most e�cient polarization by 90� scattering.

TABLE 1
The sensitive grain size for observed

wavelengths

wavelengths � the sensitive grain size a
max

7 mm 1 mm
3.1 mm 500 µm
870 µm 150 µm
340 µm 70 µm

tion due to 90� scattering.

2.4. Detectable grain size for each wavelength

We have demonstrated that the polarization due to 90�

scattering by dust grains can be significant only when the
grains are su�ciently large to have a large albedo (§2.2)
but small enough to show isotropic scattering (§2.3).
Thus, there is a sensitive grain size to be detected.
We investigate the dependence of polarization e�-

ciency on grain size especially in the case of wavelengths
are 870 µm and 3.1 mm, which correspond to ALMA
Band 7 and 3, respectively. Figure 3 shows both albedo
! = 

sca

/(
abs

+ 

sca

) and polarization P at 90�.
The polarization at 90� scattering shows perfect po-

larization at small wavelengths. At specific wavelengths,
which is almost � ⇠ a/2⇡, the polarization drops to 0.
By contrast, the albedo ! increases with increasing grain
size. If ! is nearly unity, polarization is likely to be de-
tected.
Thus, the product of polarization and albedo, P!,

gives the grain size that contributes most to the polarized
emission at any observed wavelength. In other words,
P! represents a window function for the grain size de-
tactable in polarization observations. Figure 4 shows P!

at the wavelengths of � = 340 µm, 870 µm, 3.1 mm, and
7 mm. The most sensitive grain sizes are summarized in
table 1. This suggests that detection and non-detection
of polarization for a wide range of sub-mm, mm, and cm
wavelengths can put a strong constraint on the grain size.

2.5. A toy model to understand the self-scattering

The second condition of the polarization due to scatter-
ing is light sources to be scattered. This is also satisfied
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Fig. 4.— The polarization times the albedo P! against the max-
imum grain size. This figure represents the sensitive grain size
for detection of polarization. Each line corresponds to the wave-
lengths of 0.34 mm, 0.87 mm, 3.1, and 7 mm. The band numbers
correspond to the ALMA band numbers for each wavelength.

in some protoplanetary disks if thermal dust emission it-
self can play a role of light sources. In other words, we
consider the self-scattering of dust emission. If radiation
field has an anisotropic distribution, especially in the case
that the emission is strong from two opposite directions
and weak from 90� di↵erent directions, the final scatter-
ing is partially polarized. This polarization may occur
in protoplanetary disks in the case of recently discovered
protoplanetary disks which have lopsided surface bright-
ness (Casassus et al. 2013; van der Marel et al. 2013; Fuk-
agawa et al. 2013; Isella et al. 2013; Pérez et al. 2014). In
these disks, the sub-mm emission itself may play a role
of the light source of the polarization because of their
anisotropy. In this section, we demonstrate the polariza-
tion due to self-scattering with a simple toy model.
Hereafter, we will fix the maximum grain size and

wavelengths to be a

max

= 100 µm and � = 870 µm,
which is one of the best combination of the e�cient po-
larization, in order to investigate possibilities to detect
mm-wave polarization from protoplanetary disks. Note
that the calculated absorption and scattering opacities

Multi-wave polarization → constraints on the grain size

Expected polarization degree (scalable)

Kataoka, et al., 2015
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HL Tau - continuum

ALMA Partnership, 2015

beam. Then the position of each point was moved to the nearest
local radial maximum (or minimum for dark rings). To avoid
regions where the rings become less distinct, points were
discarded if they moved outside the nominal width of the
individual rings (5 to 8 AU). Eight rings retained 55%> of the
points, to which we subsequently fit an ellipse, including its
center position, using a Markov Chain Monte Carlo (Foreman-
Mackey et al. 2013). The results are listed in Table 2, with the
full range of parameters given for the eight most distinct rings,
and just the semimajor axis for the others. It seems likely that
the “gap,” “enhancement,” and “clump” observed in VLA 1.3
and 0.7 cm images (Greaves et al. 2008; Carrasco-González
et al. 2009) at ∼10, 20, and 55 AU along the major axis of the
disk correspond to the D1, B1, and the combined emission
from the B2 to B4 rings, respectively.

The weighted average of the best-fit inclination and P.A. for
the eight fitted rings yields i 46 .72 0 .05= ±◦ ◦ and P.A.

138 .02 0 .07= ±◦ ◦ , consistent with the constraints found for

the average disk geometry over large scales. However, the best-
fit ellipses have their centers offset with respect to the peak of
the 1.0 mm emission, as can be seen in the equatorial offsets
reported in Table 2. These offsets are statistically significant for
all but the innermost ring (D1). Interestingly, the magnitude of
the position offset increases with orbital distance from the
center.
Using the weighted average inclination and P.A., we have

deprojected the combined 1.0 mm visibility data into a
circularly symmetric, face-on equivalent view (see Figure 3
(a)). We have also extracted cross-cuts at an angle of138° from
both the 1.0 mm continuum image and the spectral index map
shown in Figures 2(e) and (f). These cross-cuts are shown in
Figures 3(b) and (c). The variation in intensity between the
bright and dark rings is readily apparent. Considering only the
fully characterized rings, the largest average intensity contrast
is between the first pair with D1 being 46% less bright than B1,
and the smallest contrast is between the 5th pair with D5 being

Figure 2. Panels (a), (b), and (c) show 2.9, 1.3, and 0.87 mm ALMA continuum images of HL Tau. Panel (d) shows the 1.3 mm PSF for the same FOV as the other
panels as well as an inset with an enlarged view of the inner 300 mas centered on the PSF’s peak (the other bands show similar patterns). Panels (e) and (f) show the
image and spectral index maps resulting from the combination of the 1.3 and 0.87 mm data. The spectral index (α) map has been masked where 4errorα α < . The
synthesized beams are shown in the lower left of each panel; also see Table 1. The range of the color bar shown for panel (b) at 1.3 mm corresponds to 2− × rms to
0.9× the image peak using the values in Table 1. The color scales for panels (a), (c), and (e) are the same except using the values of rms and image peak
corresponding to each respective wavelength in Table 1.
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• i = 47° (ALMA Partnership 2015) 

• The polarization vectors are parallel to the minor axis

HL Tau pol. - prediction

Kataoka, et al., 2016a (see also Yang et al. 2016)

λ=870µm
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• We find the azimuthal polarization vectors at 3.1 mm wavelength

HL Tau polarization with ALMA

100 AU

Kataoka, et al., 2017

100 AU
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HL Tau polarizationAASTEX wavelength-dependent polarization 5

100 AU

Figure 2. Comparison of the polarization images between � = 1.3 mm (CARMA Stephens et al. 2014) and � = 3.1 mm

(ALMA, this observation). The ALMA image is smoothed to have the same beam size of CARMA where the beam size is

0.6500 ⇥ 0.5600 with the PA of 79.5 degrees. The color scale represents the polarized intensity while the grey contours represent

the continuum emission. The levels of the grey contours are (3, 6, 12, 24, 48, 96)⇥�
I

where �
I

= 2.1 mJy/beam for the CARMA

data and �
I

= 34.9 mJy/beam ALMA data.

Figure 3. Schematic illustrations for the di↵erences of polarization vectors of each mechanism of polarization of thermal dust

emission. The major axis is on the horizontal direction. Note that each panel represents E-vectors. (a) The grain alignment

with the toroidal magnetic fields. (b) The grain alignment with the radiation fields. (c) The self-scattering of the thermal dust

emission

The wavelength dependence in the polarization frac-
tion in the case of the self-scattering is strong (Kataoka
et al. 2015) while it is weaker in the case of the grain
alignment. Therefore, the most natural interpretation
is that the alignment with the radiation fields provides
the axisymmetric azimuthal polarization vectors on both
wavelengths while the self-scattering dominates at 3.1
mm.

4.2. Modeling the scattered components

By modeling the scattered components of the polariza-
tion, we can constrain the grain size in the HL Tau disk.
To model the scattering components in polarization, we
consider the total polarization fraction of the target. If

we integrate the polarization all over the disk, the ax-
isymmetric vectors are canceled out. The scattering-
induced polarization provides the vectors parallel to the
minor axis, which resides as the total polarization frac-
tion. However, the alignment with the radiative flux is
almost axisymmetric and thus does not contribute so
much on the integrated polarization fraction. We esti-
mate the contribution of the radiative flux alignment to
the total polarization fraction assuming that the disk is
geometrically and optically thin, the local alignment ef-
ficiency p is the same in the entire disk (Fiege & Pudritz
2000; Tomisaka 2011), and there is no wavelength depen-
dence. The contribution is calculated to be 0.114⇥p and
the polarization vectors are parallel to the major axis.

wavelength-dependent polarization in mm range

• The polarization vectors at 1.3 mm are parallel to the minor axis 

• The polarization vectors at 3.1 mm are in the azimuthal direction

AASTEX wavelength-dependent polarization 5

100 AU

Figure 2. Comparison of the polarization images between � = 1.3 mm (CARMA Stephens et al. 2014) and � = 3.1 mm

(ALMA, this observation). The ALMA image is smoothed to have the same beam size of CARMA where the beam size is

0.6500 ⇥ 0.5600 with the PA of 79.5 degrees. The color scale represents the polarized intensity while the grey contours represent

the continuum emission. The levels of the grey contours are (3, 6, 12, 24, 48, 96)⇥�
I

where �
I

= 2.1 mJy/beam for the CARMA

data and �
I

= 34.9 mJy/beam ALMA data.

Figure 3. Schematic illustrations for the di↵erences of polarization vectors of each mechanism of polarization of thermal dust

emission. The major axis is on the horizontal direction. Note that each panel represents E-vectors. (a) The grain alignment

with the toroidal magnetic fields. (b) The grain alignment with the radiation fields. (c) The self-scattering of the thermal dust

emission

The wavelength dependence in the polarization frac-
tion in the case of the self-scattering is strong (Kataoka
et al. 2015) while it is weaker in the case of the grain
alignment. Therefore, the most natural interpretation
is that the alignment with the radiation fields provides
the axisymmetric azimuthal polarization vectors on both
wavelengths while the self-scattering dominates at 3.1
mm.

4.2. Modeling the scattered components

By modeling the scattered components of the polariza-
tion, we can constrain the grain size in the HL Tau disk.
To model the scattering components in polarization, we
consider the total polarization fraction of the target. If

we integrate the polarization all over the disk, the ax-
isymmetric vectors are canceled out. The scattering-
induced polarization provides the vectors parallel to the
minor axis, which resides as the total polarization frac-
tion. However, the alignment with the radiative flux is
almost axisymmetric and thus does not contribute so
much on the integrated polarization fraction. We esti-
mate the contribution of the radiative flux alignment to
the total polarization fraction assuming that the disk is
geometrically and optically thin, the local alignment ef-
ficiency p is the same in the entire disk (Fiege & Pudritz
2000; Tomisaka 2011), and there is no wavelength depen-
dence. The contribution is calculated to be 0.114⇥p and
the polarization vectors are parallel to the major axis.

data from Stephens et al., 2014 Kataoka, et al., 2017
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1. Alignment of elongated dust grains with magnetic fields

Polarization mechanisms

Magnetic Field

Linear 
polarization

Thermal emission

e.g., Lazarian and Hoang 2007

2. The self-scattering of thermal dust emission 

 Tazaki, Lazarian et al. 2017

Kataoka et al. 2015

3. Alignment of elongated dust grains with radiation fields
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Alignment  with radiation fields

Front view

Side view

Incident light 

 Tazaki, Lazarian et al. 2017
If dust grains have a helicity, they emit intrinsic polarization.
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Alignment  with radiation fields

Radiative grain alignment in protoplanetary disks 9

Figure 5. Timescales relevant to RAT alignment. Top and bottom panels show the alignment timescales and the precession timescales, respectively. Left and right
panels correspond to the two different locations in the disk, (R, z) = (50 au, 0 au), and (R, z) = (50 au, 10 au), respectively. For the top panels, black and red lines
represent the timescale of the gaseous damping (tgas) and the RAT alignment timescale (trad, align). For the bottom panels, the red solid line indicates the radiative
precession timescale (trad, p). Green and blue lines show the Larmor precession timescale (tL) for paramagnetic inclusions ( fp = 10%) and superparamagnetic
inclusions ( fp = 10%, φsp = 3%, Ncl = 2 × 103), respectively. The dashed line in the bottom panels represents the gaseous damping timescale.

though sub-micron-sized grains without superparamagnetic
inclusions align with the radiation direction at surface layer,
those with superparamagnetic inclusions can become aligned
with the magnetic field. As a result, in mid-infrared polarime-
try, we expect magnetic field alignment for grains having su-
perparamagnetic inclusions.
Finally, it is worth mentioning how carbonaceous grains af-

fect on grain alignment. As shown in LH07, the alignment
induced with respect to the radiation direction is mostly in-
dependent of the grain composition, while the alignment with
respect to the magnetic field depends on the Larmor preces-
sion frequency, which is significantly reduced for carbona-
ceous grains. As a result, the introduction of the carbona-
ceous grains results in increasing the radius over which the
grains are aligned with respect to the radiation direction.

5. DEGREE OF POLARIZATION OF THE DISK
We calculate the polarization flux arising from aligned

grains, and estimate the degree of polarization of the disk. To
focus on how grain alignment affects on the degree of polar-
ization, we neglect the polarization due to the scattering. In
addition, we assume a face-on disk for the sake of simplicity;
the effect of disk inclination is discussed in Section 6.2. In
Section 5.1, we describe an analytical model of the degree of
linear polarization arising from a single ellipsoid. In Section
5.2, we present a model of the disk polarization with/without
dust settling. The results are presented in Section 5.3, 5.4, and
5.5.

5.1. Linear degree of polarization of an ellipsoid
CL07 calculated the absorption cross section along the

minor axis and the major axes using the DDSCAT code
(Draine & Flatau 1994); the degree of polarization is obtained
by

p =
Cabs,⊥ −Cabs,||
Cabs,⊥ +Cabs,||

(53)

where Cabs,⊥ and Cabs,|| are the absorption cross section for
E ⊥ â1 and E||â1, respectively, where E represents the elec-
tric field vector of the light. Obviously, for a spherical grain,
Cabs,⊥ = Cabs,||; therefore, unpolarized thermal emission is ra-
diated. CL07 showed that the degree of polarization becomes
almost zero when a grain radius is larger than λ/2π, e.g., the
geometrical optics limit. Hence, we assume

p(aeff, λ) ≈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Cabs,⊥−Cabs,||
Cabs,⊥+Cabs,|| , 2πaeff < λ

0, otherwise.
(54)

For 2πaeff < λ, we use an electrostatic analysis of the ellip-
soid (Rayleigh approximation) to find the value of Cabs,⊥ and
Cabs,|| (e.g., Bohren & Huffman 1983). Suppose α j is the po-
larizability of the ellipsoid with respect to the axis j, where j
runs from 1 to 3; then it becomes

α j = 4πa1a22
m2 − 1

3 + 3Lj(m2 − 1)
, (55)

a~100 µm
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aligned with   
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Figure 7. Polarization degree is shown with the color scale and the direction of E-vector is plotted as the white bar. Left and right panels represent mid-infrared
wavelength (λ = 12 µm) and millimeter wavelength (λ = 870 µm.), respectively. The dust grains are assumed to be magnetically poor ( fp = 0.01 and φsp = 0).
The maximum grain size is amax = 1000µm. Turbulent strength and the fhigh−J -parameter are assumed to be α = 10−3 and fhigh−J = 0.5, respectively.

are aligned with respect to the magnetic field. On the other
hand, at the inner disk, micron-sized grains being alignedwith
the radiative flux are present at the disk surface layer. Since
micron-sized grains dominate the opacity at mid-infrared, we
observe the azimuthal polarization vector. As a result, we see
alignment with the radiation direction at the inner disk and
with the magnetic field at the outer disk. When we increase
the number of magnetic inclusions, the boundary radius be-
tween the radial and the azimuthal polarization vectors de-
creases. This is because increasing the number of magnetic
inclusions increases the maximum grain size aligned with
magnetic field. It should be noted that in this case, the disk
polarization is less than 1%, while Figure 7 shows a larger
polarization degree. This is because the direction of the ra-
diation anisotropy is perpendicular to the toroidal magnetic
field; hence, the emission arising from grains aligned with the
magnetic field depolarizes the emission arising from grains
aligned with the direction of radiation.
In the presence of superparamagnetic inclusions ( fp = 0.1,
φsp = 0.03), dust grains align with the magnetic field all over
the disk at mid-infrared.
At millimeter wavelength, even in the presence of super-

paramegnetic inclusions, dust grains become aligned with the
radiation direction, not with the magnetic field as one can be
expected from Figure 5.

5.5. Grain size and wavelength dependence
Figure 10 shows the degree of polarization against the max-

imum grain size assuming fhigh−J = 0.5. The degree of polar-
ization is integrated over the whole radius of the disk. At λ =
850 µm, with increasing the maximum grain size, the degree
of polarization decreases. This is because grains larger than
the observing wavelength radiate unpolarized light; hence,
with increasing the maximum grain size, more grains emit
unpolarized light, and then the degree of polarization is re-
duced. At mid-infrared wavelength, only (sub-)micron-sized
grains at the surface layer contribute to the polarized emission
because the disk is optically thick. As a result, the maximum

grain size does not strongly affect on the resultant polarization
degree. This result implies that as the grain growth occurs,
the degree of polarization can be small at all wavelengths, in
particular for the (sub-)mm. The expected degree of polariza-
tion is much smaller than that presented in CL07, who show a
36% of degree of polarization for amax = 100 µm which drops
to 8% for amax = 1000 µm at λ = 850µm. This difference
is mostly due to the fact that CL07 assumed perfect internal
alignment.
Figure 11 shows the wavelength dependence of the de-

gree of polarization assuming the maximum grain size to be
1000 µm. At around λ = 40 µm, a strong feature appears
corresponding to the ice, where refractive index changes sig-
nificantly. At millimeter wavelength, the degree of polar-
ization increases with increasing wavelength because more
larger grains can contribute to the polarized emission for a
long observing wavelength. The observed degree of polariza-
tion depends on the parameter of fhigh−J . If 90 % of the grains
become aligned with low-J attractors, then the degree of po-
larization will be less than 1 % at all wavelengths. This is
because at low-J attractors, internal alignment of the grains
is poor, and then the degree of alignment is reduced signifi-
cantly.

6. DISCUSSION
6.1. Constraint on magnetic field strength

As was discussed in Lazarian (2007) the transition from the
grain alignment with respect to radiative flux to that with re-
spect to magnetic field can be a way of determining the mag-
netic field (see A. Lazarian & T. Hoang 2017, in preparation).
Using this approach we can place an upper limit on the mag-
netic field strength if we know the radiation field, and also
know that the dust is aligned with respect to the radiation.
Using Equations (7 and 18), the Larmor precession timescale
becomes longer than the radiative precession timescale when

B ≤ 5.9 nG a
3
2
−5χ̂

(

λ̄

1.2 µm

)3/2 ( urad
uISRF

) ⎛

⎜

⎜

⎜

⎜

⎝
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⎞

⎟

⎟
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(72)

Tazaki, Lazarian et al. 2017 (see also Lazarian and Hoang 2007)
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Figure 2. Comparison of the polarization images between � = 1.3 mm (CARMA Stephens et al. 2014) and � = 3.1 mm

(ALMA, this observation). The ALMA image is smoothed to have the same beam size of CARMA where the beam size is

0.6500 ⇥ 0.5600 with the PA of 79.5 degrees. The color scale represents the polarized intensity while the grey contours represent

the continuum emission. The levels of the grey contours are (3, 6, 12, 24, 48, 96)⇥�
I

where �
I

= 2.1 mJy/beam for the CARMA

data and �
I

= 34.9 mJy/beam ALMA data.

Figure 3. Schematic illustrations for the di↵erences of polarization vectors of each mechanism of polarization of thermal dust

emission. The major axis is on the horizontal direction. Note that each panel represents E-vectors. (a) The grain alignment

with the toroidal magnetic fields. (b) The grain alignment with the radiation fields. (c) The self-scattering of the thermal dust

emission

The wavelength dependence in the polarization frac-
tion in the case of the self-scattering is strong (Kataoka
et al. 2015) while it is weaker in the case of the grain
alignment. Therefore, the most natural interpretation
is that the alignment with the radiation fields provides
the axisymmetric azimuthal polarization vectors on both
wavelengths while the self-scattering dominates at 3.1
mm.

4.2. Modeling the scattered components

By modeling the scattered components of the polariza-
tion, we can constrain the grain size in the HL Tau disk.
To model the scattering components in polarization, we
consider the total polarization fraction of the target. If

we integrate the polarization all over the disk, the ax-
isymmetric vectors are canceled out. The scattering-
induced polarization provides the vectors parallel to the
minor axis, which resides as the total polarization frac-
tion. However, the alignment with the radiative flux is
almost axisymmetric and thus does not contribute so
much on the integrated polarization fraction. We esti-
mate the contribution of the radiative flux alignment to
the total polarization fraction assuming that the disk is
geometrically and optically thin, the local alignment ef-
ficiency p is the same in the entire disk (Fiege & Pudritz
2000; Tomisaka 2011), and there is no wavelength depen-
dence. The contribution is calculated to be 0.114⇥p and
the polarization vectors are parallel to the major axis.

Polarization mechanisms
self-scatteringalignment with B-fields alignment with radiation
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2015), the Class 0 disk candidate of NGC 1333 IRAS 4A
(Cox et al. 2015), the Herbig AE late-stage protoplane-
tary disk HD 142527 (Kataoka et al. 2016), and the disk
candidate of the high-mass protostar Cepheus A HW2
(Fernández-López et al. 2016). Polarization toward disks
have also been detected at mid-infrared wavelengths of
8.7, 10.3, and 12.5µm (Li et al. 2016, 2017). However,
polarized emission at mid-infrared wavelengths can occur
due to absorption, emission, and sometimes scattering,
causing di�culty in interpreting the polarization mor-
phology.
Despite these detections, the polarization morpholo-

gies usually were not consistent with what would be ex-
pected from magnetically aligned dust grains. In particu-
lar, Stephens et al. (2014) used the Combined Array for
Research in Millimeter-wave Astronomy (CARMA) to
measure the 1.3 mm polarization morphology in HL Tau.
The morphology was inconsistent with grains aligned
with the commonly-expected toroidal magnetic fields
(polarization/E-field vectors distributed radially in the
disk). Instead, the E-vectors were oriented more or less
along the minor axis of the disk. Kataoka et al. (2015,
2016) and Yang et al. (2016) suggested that the polariza-
tion morphology is actually consistent with that expected
from self-scattering (also see Pohl et al. 2016; Yang et
al. 2017). Indeed, several disks where polarization is
detected show consistency with the polarization mor-
phology expected from self-scattering rather than grains
aligned with the magnetic field. However, except for
the ALMA observations of HD 142527 (Kataoka et al.
2016) and HL Tau (Kataoka et al. 2017), the published
observations are too coarse to resolve more than a few
independent beams across the disk, making it di�cult
to distinguish between scattering and other polarization
mechanisms.
The high-resolution ALMA observations of HD 142527

by Kataoka et al. (2016) resolved polarization for many
10s of independent resolution elements across the disk.
The polarization was radial throughout most of the disk,
which is expected for grains aligned with a toroidal field,
but toward the edges the morphology changed from ra-
dial to azimuthal, which is more consistent with scatter-
ing. Models in Kataoka et al. (2016) found that scatter-
ing can broadly reproduce the features observed in parts
of the disk – especially where the polarization orienta-
tions change sharply – but not everywhere. A complete
understanding of this interesting case is still missing.
HL Tau is one of the brightest Class I/II in the sky at

(sub)millimeter wavelengths, and thus the polarization
morphology can be determined at high resolution with
reasonable integration times. Kataoka et al. (2017) fol-
lowed up on the Stephens et al. (2014) observations with
3mm observations of HL Tau. Surprisingly, they found
that the polarization morphology was azimuthal, which
suggests grains aligned with their long axes perpendicu-
lar to the radiation field, as predicted by Tazaki et al.
(2017). Henceforth, we will call this grain alignment
mechanism “alignment with the radiation anisotropy.”
The very di↵erent polarization morphologies observed

at 1.3mm (0.006 resolution, Stephens et al. 2014) and 3mm
(0.004 resolution, Kataoka et al. 2017) suggest that the
morphology of the polarization emission is strongly de-
pendent on the wavelength. This Letter presents ALMA
observations at both 1.3 mm and 870µm at resolutions

Figure 1. ALMA polarimetric observations at 3mm (top,
Kataoka et al. 2017), 1.3mm (middle), and 870µm (bottom),
where the red vectors show the >3� polarization morphology (i.e.,
vectors have not been rotated). Vector lengths are linearly propor-
tional to P . The color scale shows the polarized intensity, which is
masked to only show 3� detections. Stokes I contours in each panel
are shown for [3, 10, 25, 50, 100, 200, 325, 500, 750, 1000]⇥�I , where
�I is 44, 154, and 460µJy bm�1 for 3mm, 1.3mm, and 870µm,
respectively.

of 0.003 and 0.004, respectively.
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ing. Models in Kataoka et al. (2016) found that scatter-
ing can broadly reproduce the features observed in parts
of the disk – especially where the polarization orienta-
tions change sharply – but not everywhere. A complete
understanding of this interesting case is still missing.
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(sub)millimeter wavelengths, and thus the polarization
morphology can be determined at high resolution with
reasonable integration times. Kataoka et al. (2017) fol-
lowed up on the Stephens et al. (2014) observations with
3mm observations of HL Tau. Surprisingly, they found
that the polarization morphology was azimuthal, which
suggests grains aligned with their long axes perpendicu-
lar to the radiation field, as predicted by Tazaki et al.
(2017). Henceforth, we will call this grain alignment
mechanism “alignment with the radiation anisotropy.”
The very di↵erent polarization morphologies observed

at 1.3mm (0.006 resolution, Stephens et al. 2014) and 3mm
(0.004 resolution, Kataoka et al. 2017) suggest that the
morphology of the polarization emission is strongly de-
pendent on the wavelength. This Letter presents ALMA
observations at both 1.3 mm and 870µm at resolutions
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Kataoka et al. 2017), 1.3mm (middle), and 870µm (bottom),
where the red vectors show the >3� polarization morphology (i.e.,
vectors have not been rotated). Vector lengths are linearly propor-
tional to P . The color scale shows the polarized intensity, which is
masked to only show 3� detections. Stokes I contours in each panel
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have also been detected at mid-infrared wavelengths of
8.7, 10.3, and 12.5µm (Li et al. 2016, 2017). However,
polarized emission at mid-infrared wavelengths can occur
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phology.
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measure the 1.3 mm polarization morphology in HL Tau.
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with the commonly-expected toroidal magnetic fields
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Figure 2. Comparison of the polarization images between � = 1.3 mm (CARMA Stephens et al. 2014) and � = 3.1 mm

(ALMA, this observation). The ALMA image is smoothed to have the same beam size of CARMA where the beam size is

0.6500 ⇥ 0.5600 with the PA of 79.5 degrees. The color scale represents the polarized intensity while the grey contours represent

the continuum emission. The levels of the grey contours are (3, 6, 12, 24, 48, 96)⇥�
I

where �
I

= 2.1 mJy/beam for the CARMA

data and �
I

= 34.9 mJy/beam ALMA data.

Figure 3. Schematic illustrations for the di↵erences of polarization vectors of each mechanism of polarization of thermal dust

emission. The major axis is on the horizontal direction. Note that each panel represents E-vectors. (a) The grain alignment

with the toroidal magnetic fields. (b) The grain alignment with the radiation fields. (c) The self-scattering of the thermal dust

emission

The wavelength dependence in the polarization frac-
tion in the case of the self-scattering is strong (Kataoka
et al. 2015) while it is weaker in the case of the grain
alignment. Therefore, the most natural interpretation
is that the alignment with the radiation fields provides
the axisymmetric azimuthal polarization vectors on both
wavelengths while the self-scattering dominates at 3.1
mm.

4.2. Modeling the scattered components

By modeling the scattered components of the polariza-
tion, we can constrain the grain size in the HL Tau disk.
To model the scattering components in polarization, we
consider the total polarization fraction of the target. If

we integrate the polarization all over the disk, the ax-
isymmetric vectors are canceled out. The scattering-
induced polarization provides the vectors parallel to the
minor axis, which resides as the total polarization frac-
tion. However, the alignment with the radiative flux is
almost axisymmetric and thus does not contribute so
much on the integrated polarization fraction. We esti-
mate the contribution of the radiative flux alignment to
the total polarization fraction assuming that the disk is
geometrically and optically thin, the local alignment ef-
ficiency p is the same in the entire disk (Fiege & Pudritz
2000; Tomisaka 2011), and there is no wavelength depen-
dence. The contribution is calculated to be 0.114⇥p and
the polarization vectors are parallel to the major axis.
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The wavelength dependence in the polarization frac-
tion in the case of the self-scattering is strong (Kataoka
et al. 2015) while it is weaker in the case of the grain
alignment. Therefore, the most natural interpretation
is that the alignment with the radiation fields provides
the axisymmetric azimuthal polarization vectors on both
wavelengths while the self-scattering dominates at 3.1
mm.

4.2. Modeling the scattered components

By modeling the scattered components of the polariza-
tion, we can constrain the grain size in the HL Tau disk.
To model the scattering components in polarization, we
consider the total polarization fraction of the target. If

we integrate the polarization all over the disk, the ax-
isymmetric vectors are canceled out. The scattering-
induced polarization provides the vectors parallel to the
minor axis, which resides as the total polarization frac-
tion. However, the alignment with the radiative flux is
almost axisymmetric and thus does not contribute so
much on the integrated polarization fraction. We esti-
mate the contribution of the radiative flux alignment to
the total polarization fraction assuming that the disk is
geometrically and optically thin, the local alignment ef-
ficiency p is the same in the entire disk (Fiege & Pudritz
2000; Tomisaka 2011), and there is no wavelength depen-
dence. The contribution is calculated to be 0.114⇥p and
the polarization vectors are parallel to the major axis.

Implications to planet formation  

if (2) self-scattering works, the 
grain size is ~ λ/(2π)


