ALMA polarization of HL Tau - investigating planet formation -

ALMA Band 7 (870 µm) ALMA Band 3 (3.1 mm) 1.Jr HL Tau **HL** Tau 58.5" 1.0 58.0" 0.5 57.5" 0.0 57.0" -0.556.5" -1.0'56.0" 100 AU 100 AU -1.5 1.0 0.5 0.0 - 0.5 - 1.0 - 1.38.50s 38.45s 38.40s 4h31m38.35s Stephens et al. 2017 Kataoka et al. 2017 **Scattering** Alignment

Akimasa Kataoka (NAOJ fellow, NAOJ)

T. Muto (Kogakuin U.), M. Momose, T. Tsukagoshi (Ibaraki U.), H.Nagai (NAOJ), M. Fukagawa (Nagoya U.), H. Shibai (Osaka U.), T. Hanawa (Chiba U.), K. Murakawa (Osaka-S.), Kees Dullemond, Adriana Pohl (Heidelberg)

Today's talk

- Old and new theories for explaining millimeter-wave polarization
 - 1. Alignment with magnetic fields
 - 2. Self-scattering of thermal dust emission
 - 3. Alignment with radiation fields
- Testing the theory with ALMA polarization observations
 - HD 142527 morphology of pol. vectors
 - HL Tau wavelength dependence

SED of a protoplanetary disk

• TW Hya ($M_{star} = 0.6 M_{\odot}, T_{eff} = 4000 \text{ K}$)

- The millimeter emission is thermal dust emission from the disk.
- How can we polarize the thermal dust emission?

Polarization mechanisms

1. Alignment of elongated dust grains with magnetic fields

e.g., Lazarian and Hoang 2007

2. The self-scattering of thermal dust emission

<u>Kataoka</u> et al. 2015

3. Alignment of elongated dust grains with radiation fields

Tazaki, Lazarian et al. 2017

Dust is big in disks

Light source of scattering

Vertical Polarization

self-scattering in an inclined disk

(disk, edge-on view)

Yang, Li, et al. 2016

See also <u>Kataoka</u> et al. 2016a

Conditions of dust grains for polarization

If (grain size) ~ λ/2π, the polarized emission due to dust scattering is the strongest

Grain size constraints by polarization

Multi-wave polarization \rightarrow constraints on the grain size

HL Tau - continuum

ALMA Partnership, 2015

HL Tau pol. - prediction

- i = 47° (ALMA Partnership 2015)
- The polarization vectors are parallel to the minor axis

Kataoka, et al., 2016a (see also Yang et al. 2016)

HL Tau polarization with ALMA

We find the azimuthal polarization vectors at 3.1 mm wavelength

<u>Kataoka</u>, et al., 2017

HL Tau polarization

- The polarization vectors at 1.3 mm are parallel to the minor axis
- The polarization vectors at 3.1 mm are in the azimuthal direction

wavelength-dependent polarization in mm range

Polarization mechanisms

1. Alignment of elongated dust grains with magnetic fields

e.g., Lazarian and Hoang 2007

2. The self-scattering of thermal dust emission

Kataoka et al. 2015

3. Alignment of elongated dust grains with radiation fields

Tazaki, Lazarian et al. 2017

Alignment with radiation fields

If dust grains have a helicity, they emit intrinsic polarization.

Tazaki, Lazarian et al. 2017

Tazaki, Lazarian et al. 2017 (see also Lazarian and Hoang 2007)

Polarization mechanisms

alignment with B-fields

self-scattering

alignment with radiation

- Toroidal magnetic fields are assumed
- Inclination-induced scattering -> parallel to the minor axis
- Grain size is a ~λ/2π: strong wavelength dependence
- Grains are needed to be big (~>100um)
- Radiation gradient is in the radial direction.

Polarization mechanisms

Akimasa Kataoka (NAOJ fellow)

Wavelength dependence

HL Tau polarization

Summary

Theories

- 1. Alignment with (toroidal) magnetic fields.
- 2. Self-scattering of thermal dust emission
- **3. Alignment with radiation** fields

Implications to planet formation

if (2) self-scattering works, the grain size is $\sim \lambda/(2\pi)$

Observations

