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ALMA, designed for extragalactic science...

m Sensitivity

- The ability to detect spectral line emission from CO or [CIl] in a
normal galaxy like the Milky Way at a redshift of z ~ 3, in less
than 24 hours of observation.

m (spectral/spatial) Resolution

- The ability to provide precise images at an angular/spectral
resolutions of 0.”1 and > 0.01 km/s of all sources transiting at an
elevation <-20°

De Breuck (2004)
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~ ALMA's observing capabilities for Extragalactic Science

m  Sensitivity

- detect spectral line emission from CO or [CII] in MW-like galaxies at z~3
in less than 24h

m Spectral/spatial resolution
- ~0.5 km/s channel resolution
- down to milli-arcsec resolution: ~1 pc (local Universe) to ~1 kpc (z~1.0)
®  Array configuration
- ALMA 12-m x 50 array (~150m out to ~16 km)
- Atacama Compact Array (ACA; 7-m x 12) + TP (4 x 12m)
— short spacing
= Filed of view T &4

(ACA)

-21" @ 300 GHz (primary beam), scaling linearly with wavelength

- mosaicking required for regions larger than the primary beam
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Galaxy Formation & evolution:
a key towards understanding the cosmic history of the Universe
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"~ ALMA Extragalactic Science: observing perspectives

= Mapping
- distribution and kinematics of molecular gas in galaxies
- Giant Molecular Clouds (GMCs) in nearby galaxies
- outflowing or infalling molecular gas (feedback or fueling?)

— observational constraints on the role of molecular gas in star
formation, and thus the evolution of galaxies

m Detection

- (Faint) source counts and cosmic H, contents of the Universe

- SFR of sub-mm galaxies in the early Universe
- new populations?

— observational cosmology and high-z Universe

inspired by several ALMA review talks including Muller’s one
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ense CO clouds in the low metallicity dwarf galaxy WLM
(Rubio et al. 2015, Nature)

® |n primeval and local dwarf galaxies:
- Carbon and oxygen are low
- the dust opacity is low
- CO forms slowly and easily destroyed

— challenging for the standard SF model in
CO-rich clouds

= WLM, a metal-poor isolated dwarf galaxy
- with 12+log(O/H)~7.8 (c.f. MW~8.66)
-at 0.98 Mpc

- showing efficient SF even with a low CO
abundance (12 times higher than the MW)

" To understand SF in metal-poor galaxies:

— ALMA "2CO(1-0) Band 3 observations of the
two unresolved regions by APEX obs.

- 6.2x4.3 pc@ 5 mJy/beam + 0.5 km/s
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Dense CO clouds in the low metallicity dwarf galaxy WLM
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(Rubio et al. 2015, Nature)
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10 dense CO clouds detected

— the sizes and virial masses, and thus the
densities calculated

— an average radius of 2 pcand M ~2x103M,

— showing a gradual transition between low-
density atomic gas to high-density CO

— the clouds are tiny but have typical densities
and column densities as in the MW

— the lack of massive CO clouds at low
metallicity which satisfy the usual correlations

— this explains why star clusters in dwarfs have
similar densities to those in giant spirals

Without a major impact to increase the
pressure and mass, dwarfs cannot form massive
clusters (e.g., NGC 1569, NGC 5253)

— if the massive metal-poor GCs in the halo of
the MW formed in dwarfs, they were triggered
by such an impact
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An AGN-driven outlfow in the dense molecular gas
(Garicia-Burillo et al. 2014, A&A)
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= ALMA Cycle0 band 7/9 observations of Seyfert 2 galaxy,
NGC 1068 (0.3"-0.5"; ~20-35 pc at 14 Mpc)

— distribution/kinematics of the molecular gas in the disk

— fueling/feedback of SF and nuclear activity in NGC 1068
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BIMA SONG (6”) (Regan et al. 2001)
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KNI
An AGN-driven outlfow in the dense molecular gas )
(Garicia-Burillo et al. 2014, A&A)
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ALMA Cycle0 band 7/9 observations of Seyfert 2 galaxy,
NGC 1068 (0.3"-0.5"; ~20-35 pc at 14 Mpc)

— distribution/kinematics of the molecular gas in the disk

— fueling/feedback of SF and nuclear activity in NGC 1068
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An AGN-driven outlfow in the dense molecular gas
(Garicia-Burillo et al. 2014, A&A)
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®  From the kinematic analysis of maps traced by several molecular lines (CO, HCN, CS)

— near the circumnuclear disk (CND), significant outflowing motions (driven by AGN)
observed

— the kinematics near starburst ring & bar regions is perturbed by inward motions

— AGN-driven molecular outflow could quench SF in the inner part on short time
scale but the molecular gas reservoir is replenished by gas inflow from the outer
disk : self-regulated star formation
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Uncovering the golden age of galaxy formation
(Decali et al. 2016, ApJ)

® Early results from ALMA Spectroscopic Survey
in the Hubble UDF (ASPECS): 50 hrs (observed
so far) + 150 hrs

= An ALMA band 3/5 blind survey for HUDF
(z~4.5)

— a rapidly rising gas content in galaxies with
increasing look-back time

— the root cause for vigorous SFR over the
peak epoch of cosmic SFatz ~ 2
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Uncovering the golden age of galaxy formation

(Decali et al. 2016, ApJ)
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— (First) CO luminosity function (solely from
CO emission) and cosmic H2 density as a
function of z out to ~4.5

— Clear evidence of an evolution in the CO
luminosity function

— More CO luminous galaxies at z~2

— More gas-rich than predicted by recent
semi-analytic models

— Cosmic H, with a factor 3-10 drop down
from z~2 to z~0
— The cosmic SFR partly driven by the

molecular gas reservoirs at the peak of cosmic
SF (z~2)

Madau & Dickson (2014)
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= =~Soudrce counts of faint SMGs from high-resolution ALMA survey
(Karim et al. 2013, MNRAS)

= Submilimetre galaxies (SMGs:
dust-obscured starbursts
galaxies) placed in ULIRG/HLIRG
classes

® Linked to QSO activity and the
SF at high-z

®  An essential element and
constraint on galaxy evolution
theories

< ALMA follow-up for 126 submilimetre sources detected from the APEX LESS
survey for the Extended Chandra Deep Field South

< ALMA Cycle0 Band 7 receivers in the compact array configuration
« High sensitivity (~0.4 mJy/beam) & angular resolution (~1.5")

« ~120s integration time for each science field

Special lectures on ALMA @ SNU (7 Mar 2018) 15/21 Se-Heon Oh



= KAt
= =-Soudrce counts of Faint SMGs from high-resolution ALMA survey
(Karim et al. 2013, MNRAS)
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— source number counts from the 870 ym ALMA survey for the ECDF
— ~3x deeper and ~10x higher than the APEX single dish survey

— in broad agreement with those from the APEX survey but showing a
deficit of bright sources with > ~8 mJy:

« comprised of multiple sources: — a limit to the maximum SFR in an SMG,
which in turn indicates the galaxies’ space densities of < 10> Mpc3 with M.,

>5x10"°M,
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SF & gas kinematics of QSO host galaxies at z~6
(Wang et al. 2013, ApJ)
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® QSOsatz>6,aunique sample
for the first SMBHs and their
host galaxies

® ~60 QSOs known at z~ 6 from
optical/IR surveys

= 10° M, SMBHSs at z ~ 6 — fast BH

accretion and SMBH-galaxy
evolution within 1 Gyr after the
big bang
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(1) dust continuum: an efficient way to search fFor SF activity at high z
(2) CO: molecular gas of the requisite fuel for SF
(3) [Cl1] 158 pm line emission at sub-mm: PDRs + ISM phase & dynamics
— the co-evolution of the first SMBHs and their host galaxies

®  ALMA Cycle0 Band 6/7 observations of 5 QSOs at z~6 (50-90 min/target)
— 0.4-0.7 mJy/beam @ 0".7 (~4 kpc @ z~6) + 16-18 km/s
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SF & gas kinematics of QSO host galaxies at z~6

(Wang et al. 2013, ApJ)
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— Dust continuum+[C II] line detected from
the host galaxies of 5 QSOs atz ~ 6

- Indicates active SF in the central few kpc
region

- [C 1] / FIR comparable to typical ones in
local ULIRGs and other FIR-luminous QSOs at
high z

— the dynamical masses within the [C Il]-
emitting region measured

= M,e/My,, are an order of mag. higher than
those of local normal galaxies

— study an early phase of SMBH-galaxy
evolution

— ALMA [C Il] emission line observations are
ideal for the study of star-Forming activity +
gas dynamics in the nuclear region of the
starburst QSO host galaxies at high z
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ust'in the reionization era: A z=8.38 gravitationally-lense galaxy
(Laporte et al. 2017, ApJ)

ALMA 356GHz .iALMA 350GHz ALMA 362GHz

-
®,

®  Measuring dust and stellar masses of the star-forming galaxies at 6 < z < 10 when HIl was
photo-ionized is important to trace the early SF and chemical enrichment

®  Timing the dust content in such infant systems produced by the first SNe would
measure the extent/duration of previous SF

®  ALMA's detection capability fFocused on z~6 (biased?) ultra-luminous sources can be
further pushed out to z~10 and beyond by targeting gravitationally-lensed systems

— 2.5 hrs of ALMA Band 7 observations of a gravitationally-lensed galaxy at z~8.38 in
the HUDF (July 2016)
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£in the reionization era: A z=8.38 gravitationally-lense galaxy
(Laporte et al. 2017, ApJ)
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— By Fitting a simple modified black body SED to the ALMA continuum, a total FIR luminosity
(7.1-18.2x10"°M,) and a dust mass (1.8 -10.4 x 10¢ M,) are derived

— Consistent with those derived from a multi-band SED library fitting which provides:
(1) SFR~20 M_/yr; (2) M,~2 x 10° M ; (3) M ..~5.5 X 10° M,

— Recent studies indicate significant SF began at z~10 - 12, about 200 Myr before the lensed
galaxy

— 0.2% of newly-born stars are type Il SNe which is expected to produce 0.5 M_over 200 Myr
— the dust mass produced from SNe Il ~ 4 x 10 M,

— tracing the early star formation / chemical enrichment out to z ~ 10 if combined with JWST
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Summary

m ALMA's superb observing capabilities with 8 receiver bands (two under
development) from 9.5 -32 mm (950 — 84 GHz) allow for detailed imaging of
continuum or molecular line emission from

: 1 —100 pc scale molecular clouds and substructures in nearby galaxies or
: 0.1 — 1 kpc scale gas+dust discs in high-redshift sources
: within 24 hrs, at the maximum (in general)
m |deal for either
(1) MAPPING and /or RESOLVING
: the distribution and/or kinematics of molecular gas in nearby galaxies
: outflowing/infalling molecular gas in the central region of galaxies

or (2) DETECTING

: Faint sub-mm sources & dust content in the early Universe

Thank you!

Special lectures on ALMA @ SNU (7 Mar 2018) 21/21  Se-Heon Oh




'o\ I Korea Astronomy and
Space Science Institute

ALMA Extragalactic Science: Mapping
(an AGN-driven outflow in the dense molecular gas
Garcia-Burillo et al. 2014)

Molecular Disk

Nk |
High lonization Lines |

— The molecular outflow launched when the ionization cone of the narrow line
region sweeps the nuclear disk

— The outflow rate far higher than the SFR: AGN-driven

—_
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CO ladder coverage for ALMA bands

KI\SI Koren pstronomy and
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