Technical Justification and CASA Simulator

ALMA Class Seoul National University 2018 March 12 Woojin Kwon

ALMA proposals

- [OT] Cover page: abstract, names, obs. hours, science goals (targets)
- Science Case (justification): up to 4 pages
- [OT] Technical Parameters
- [OT] Technical Justification

Technical Justification

what cube data for your science?

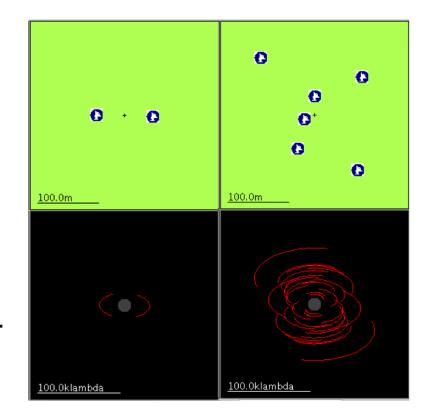
- Sensitivity
- Imaging
- Correlator configuration
- Choices to be justified

Sensitivity

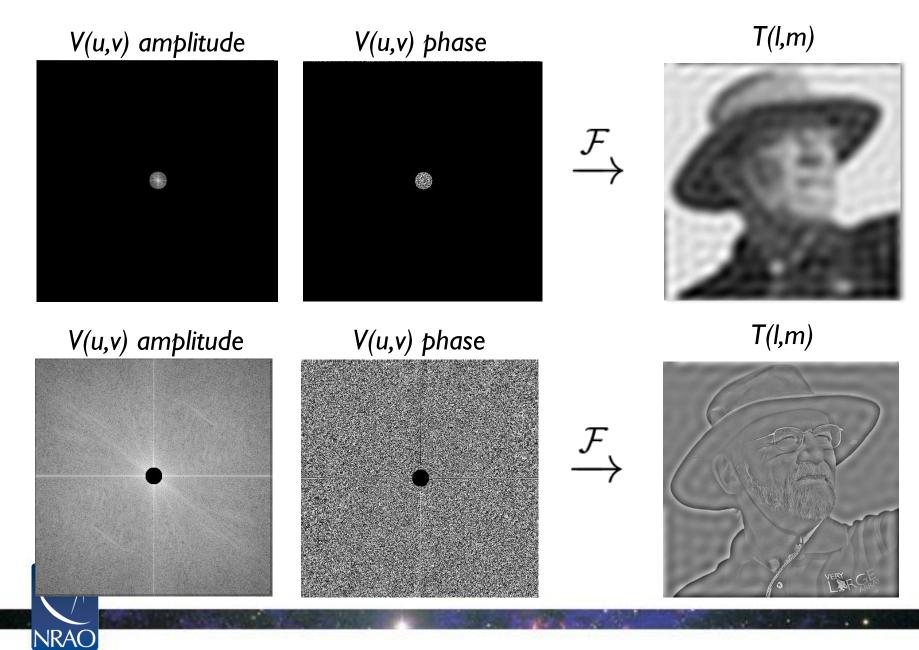
- Multiple sources: most restrictive values
- Continuum and/or line flux
- Line: bandwidth for sensitivity $\leq 1/3$ of line width
- Spectral dynamic range: both spectral line properties and a continuum flux put in <continuum>/<line rms>

Imaging

- Imaging goals of a proposal
- Requested angular resolution
- Requested Largest Angular Scale (LAS)
 0 (zero): any 12-m configuration could be used so angular resolution might be much better
- Change OT's recommendation (ACA, default Nyquist sampling for rectangular mosaics)
 => explicitly justify


Basics of Interferometry

- Interferometer data: uv visibility
 - Power corresponding to the correlation of the waves received at two antennas
 - FT relation with sky intensity distribution
 - (u, v) coordinates


 $V(u,v) \rightleftharpoons A_N(l,m)I(l,m).$

$$\begin{split} S(u,v)V(u,v) & \rightleftarrows \quad FT^{-1}[S(u,v)]*FT^{-1}[V(u,v)]\\ & B_D(l,m)*[A_N(l,m)I(l,m)]. \end{split}$$

 Keywords uv coverage, uv distance, synthesized beams, primary beam...

Inner and Outer (u,v) Boundaries

15th Synthesis Imaging Workshop

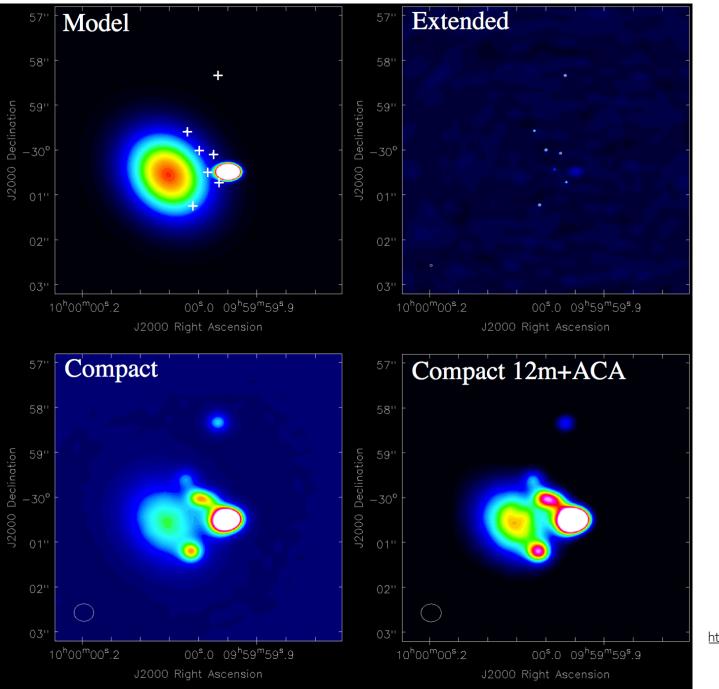
	Band	3	4	5	6	7	8	9	10
	Frequency (GHz)	100	150	185	230	345	460	650	870
! Configuration									
7-m	θ_{res} (arcsec)	12.5	8.35	6.77	5.45	3.63	2.72	1.93	1.44
	θ_{MRS} (arcsec)	66.7	44.5	36.1	29.0	19.3	14.5	10.3	7.67
C43-1	θ_{res} (arcsec)	3.38	2.25	1.83	1.47	0.98	0.735	0.52	0.389
	θ_{MRS} (arcsec)	28.5	19.0	15.4	12.4	8.25	6.19	4.38	3.27
C43-2	θ_{res} (arcsec)	2.3	1.53	1.24	0.999	0.666	0.499	0.353	0.264
	θ_{MRS} (arcsec)	22.6	15.0	12.2	9.81	6.54	4.9	3.47	2.59
C43-3	θ_{res} (arcsec)	1.42	0.943	0.765	0.615	0.41	0.308	0.218	0.163
	θ_{MRS} (arcsec)	16.2	10.8	8.73	7.02	4.68	3.51	2.48	1.86
C43-4	θ_{res} (arcsec)	0.918	0.612	0.496	0.399	0.266	0.2	0.141	0.106
	θ_{MRS} (arcsec)	11.2	7.5	6.08	4.89	3.26	2.44	1.73	1.29
C43-5	θ_{res} (arcsec)	0.545	0.363	0.295	0.237	0.158	0.118	0.0838	0.0626
	θ_{MRS} (arcsec)	6.7	4.47	3.62	2.91	1.94	1.46	1.03	0.77
C43-6	θ_{res} (arcsec)	0.306	0.204	0.165	0.133	0.0887	0.0665	0.0471	0.0352
	θ_{MRS} (arcsec)	4.11	2.74	2.22	1.78	1.19	0.892	0.632	0.472
C43-7	θ_{res} (arcsec)	0.211	0.141	0.114	0.0917	0.0612	0.0459	0.0325	0.0243
	θ_{MRS} (arcsec)	2.58	1.72	1.4	1.12	0.749	0.562	0.398	0.297
C43-8	θ_{res} (arcsec)	0.096	0.064	0.0519	0.0417	0.0278	-	-	-
	θ_{MRS} (arcsec)	1.42	0.947	0.768	0.618	0.412	-	-	-
C43-9	θ_{res} (arcsec)	0.057	0.038	0.0308	0.0248	-	-	-	-
	θ_{MRS} (arcsec)	0.814	0.543	0.44	0.354	-	-	-	-
C43-10	θ_{res} (arcsec)	0.042	0.028	0.0227	0.0183	-	-	-	-
	θ_{MRS} (arcsec)	0.496	0.331	0.268	0.216	-	-	-	-

Table 7.1: Resolution (θ_{res}) and maximum recoverable scale (θ_{MRS}) for the 7-m Array and 12-m Array configurations available during Cycle 6 as a function of a representative frequency in a band. The value of θ_{MRS} is

Correlator configuration

- Number of spectral resolution elements (including Hanning smoothing and spectral averaging) per line width
- Bandwidth of the Representative Window
- Example: We use the default continuum polarimetric correlator set-up.

Choices to be justified


- Non-Nyquist mosaic sampling: for a large field without large-scale structures
- Single polarization: e.g., for highest spectral resolution
- Low max elevation: large atmospheric attenuation, limited time above the horizon
- User-defined calibration: must be rigorously justified
- Override of OT's sensitivity-based time estimate: e.g., monitor a source over a certain time span, sufficient uv coverage for imaging complicated structures => detailed justification for the time override and how the new time was estimated (including calibrations and overheads)
- **Time-constrained observing**: significant constraints on the scheduling of all ALMA projects

CASA simulator

Why?

- Mock observations of ALMA
- Not necessary, however:
- Show if your science can be done by ALMA
- Verify what you need for your science goals e.g., which configurations
- Flux loss by interferometry?

• Comparison of different array configurations

http://casaguide.nrao.edu

 $V(u,v) \rightleftharpoons A_N(l,m)I(l,m).$ $S(u,v)V(u,v) \rightleftharpoons FT^{-1}[S(u,v)] * FT^{-1}[V(u,v)]$ $B_D(l,m) * [A_N(l,m)I(l,m)].$

• Simulating interferometric data (visibilites)

- 1. sky intensity distribution (model): I(I,m)
- 2. primary beam correction: A_N(I,m) I(I,m)
- 3. FT: V(u,v)
- 4. sampling over S(u,v): S(u,v) V(u,v)

• Interferometric data reduction

- 1. data: S(u,v) V(u,v)
- 2. IFT

3. de-convolution of $B_D(I,m)$ to fine $A_N(I,m) I(I,m)$

Two Approaches

- CASA simulation tools
- Observation Support Tool (OST) EU ARC, University of Manchester Web-based <u>http://almaost.jb.man.ac.uk</u>

CASA 123

- Common Astronomy Software Applications
 http://casa.nrao.edu
- Install CASA version 4.3.1 (latest: version 5.1.1)
- > casapy
 - : tasklist
 - : taskhelp
 - : inp(<task>)
 - : project = 'sim' (example of putting in a parameter value)

.

: go (or a task name)

CASA simulation tools

- CASA version 4.3 <u>http://casaguides.nrao.edu/index.php?</u> <u>title=Simulating_Observations_in_CASA_4.3</u>
- Simobserve generate visibilities
- Simanalyze

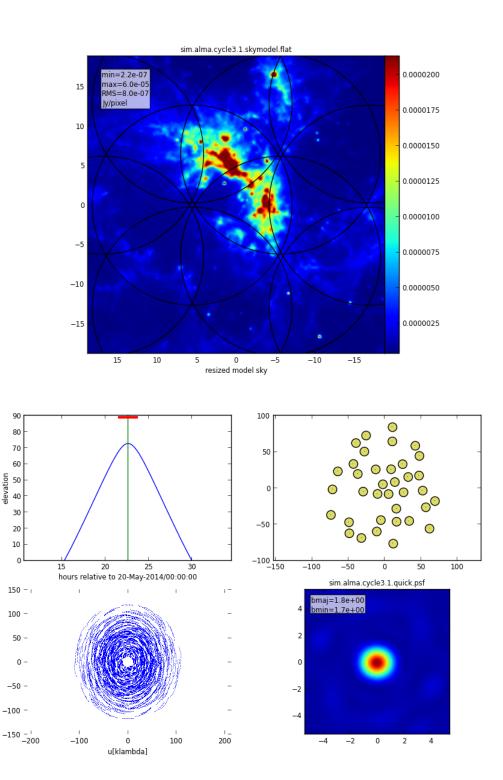
produce a cleaned image

• (Simalma)

particular cases: e.g., combining 12-m array and ACA data

What you need

- Possible starting points: a model image in FITS e.g.,
 - images taken at a different wavelength
 - numerical simulation results
 - knowledge on object size and total flux


Simobserve

• Generate visibilities: 30 Doradus

ject	=	ility simulatior 'sim'		root prefix for output file names			1-1	#]
model		'30dor.fits'	#	model image to observe	antennalist	-	'alma.cycle3.1.c	:*g` #	# interferometer an file
inbright		'0.06mJy/pixel'	# #	scale surface brightness of brightest pixel e.g. "1.2Jy/pixel"	refdate	=	'2014/05/21'	# #	date of observation unless concatting
indirection	=	'J2000 10h00m00	-400 #	00m00' # set new direction e.g. "J2000 19h00m00 -40d00m00"	hourangle	=	'transit'	# #	hour angle of obse "-3:00:00", "5h",
incell	-	'0.15arcsec'	# #	<pre>set new cell/pixel size e.g. "0.1arcsec"</pre>				# #	without units wil hours), or "trans
incenter	=	'230GHz'	#	<pre>set new frequency of center channel e.g. "89GHz" (required even for 2D</pre>	totaltime	=	'7200s'	# #	total time of obse of repetitions
			#	model)	caldirection	=	••	#	pt source calibrat
inwidth	=	'2GHz'	# #	set new channel width e.g. "10MHz" (required even for 2D model)	calflux	=	'1Jy'		
					thermalnoise	=	'tsys-atm'	#	add thermal noise:
plist	=		#	componentlist to observe				#	manual ""]
pointings	=	True			user_pwv	=	0.5	#	Precipitable Water
integration	=	'600s'	#	integration (sampling) time	t_ground	=	269.0	#	ambient temperatur
direction	=		# #	"J2000 19h00m00 -40d00m00" or "" to center on model	seed	=	11111	#	random number seed
mapsize	=	['', '']	# #	angular size of map or "" to cover model	leakage	=	0.0	# #	cross polarization only)
maptype	=	'ALMA'	#	hexagonal, square (raster), ALMA, etc	graphics	=	'both'	#	display graphics of
pointingspaci	.ng =		#	spacing in between pointings or				#	[screen file both
			#	"0.25PB" or "" for ALMA default	verbose	=	False		
			#	INT=lambda/D/sqrt(3), SD=lambda/D/3	overwrite	=	True	# #	overwrite files st \$project

Outputs

- sim.alma.cycle3.1.ms/
- sim.alma.cycle3.1.noisy.ms/
- sim.alma.cycle3.1.observe.png
- sim.alma.cycle3.1.ptg.txt
- sim.alma.cycle3.1.quick.psf/
- sim.alma.cycle3.1.skymodel/
- sim.alma.cycle3.1.skymodel.flat/
- sim.alma.cycle3.1.skymodel.png

Simanalyze

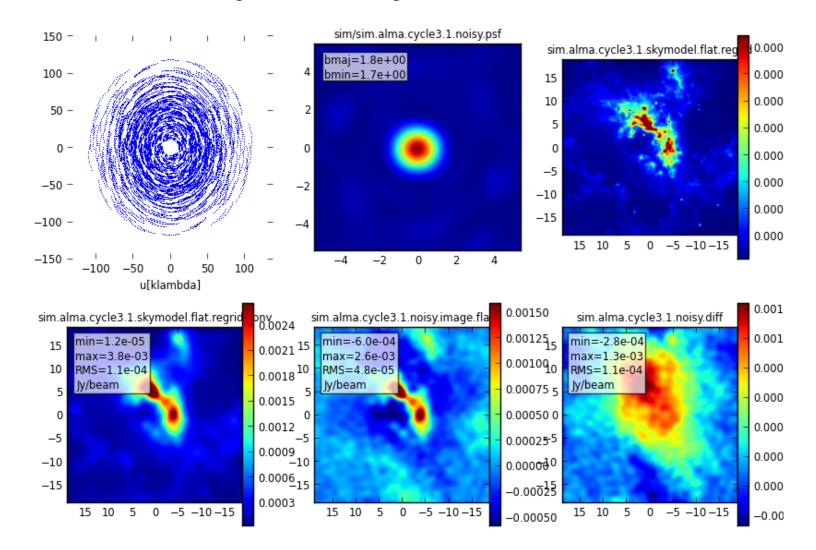
• Generating (cleaned) image

CASA <57>: inp

CA	SA <57>: 1n	р								
	> in	рO								
#	simanalyze	::	image	and	analyze	measurement	sets	created	with	simobserve

project	=	'sim'
image	=	True
vis modelimage	=	'default'
imsize	-	0
imdirection	-	
cell	=	
interactive	-	False
niter	-	0
threshold weighting	=	'0.1mJy' 'natural'
mask	-	
outertaper	=	
pbcor	-	True
stokes featherimage	Ē	.1.

asure	ment sets created with simobserve	
#	root prefix for output file names	showuv
#	(re)image \$project.*.ms to	showpsf
#	<pre>\$project.image</pre>	
#	Measurement Set(s) to image	showmode
#	lower resolution prior image to use	
#	in clean e.g. existing total power	showconv
#	image	Showcom
#	output image size in pixels (x,y) or	showcled
#	0 to match model	
#	set output image direction,	showresi
#	(otherwise center on the model)	
#	cell size with units e.g. "10arcsec"	showdiff
#	or "" to equal model	
#	interactive clean? (make sure to set	
#	niter>0 also)	
#	maximum number of iterations (0 for	showfide
#	dirty image)	
#	flux level (+units) to stop cleaning	graphics
#	weighting to apply to visibilities.	gruphics
#	briggs will use robust=0.5	
#	Cleanbox(es), mask image(s),	verbose
#	region(s), or a level	overwrite
#	uv-taper on outer baselines in uv-	
#	plane	dryrun
#	correct the output of synthesis	
#	images for primary beam response?	logfile
#	Stokes params to image	
#	image (e.g. total power) to feather	CASA <58>:
#	with new image	CRUM SUDE:


analyze	=	True
showuv showpsf	=	True True
showmodel	=	True
showconvolved	=	True
showclean	=	True
showresidual	=	False
showdifference	-	True
showfidelity	=	False
graphics	=	'both'
verbose	=	False
overwrite	=	True
dryrun	=	False
logfile	=	
-		

#	(only first 6 selected output
#	be displayed)
#	display uv coverage
#	display synthesized (dirty)
#	(ignored in single dish sim
#	display sky model at origina
#	resolution
#	display sky model convolved v
#	output clean beam
#	display the synthesized image
#	display the clean residual in
#	(ignored in single dish sim
#	display difference between o
#	cleaned image and input mode
#	image convolved with output
#	beam
#	display fidelity (see help)
#	display graphics at each sta
#	[screen file both none]
#	overwrite files starting with
#	\$project
#	only print information [expe

only for interfermetric date

Outputs

 sim.alma.cycle3.1.noisy.analysis.png uv coverage, dirty beam, model, convolved model image, clean image, differences

Observation Supporting Tool

- Web-based
- Results can be delayed depending on job load
- http://almaost.jb.man.ac.uk

EUROPEAN ARC ALMA Regional Centre UK	ALMA Observation Support Tool						
ALMA Observation Support Tool							
	Version 5.0						
OST NEWS HELP QUEUE LIBRARY ALMA HELPDESK							
Array Setup:							
Instrument: ALMA	Select the desired ALMA antenna configuration.						
Sky Setup:							
Source model: OST Library: Central point source	Choose a library source model or supply your own.						
Upload: Choose File No file chosen	You may upload your own model here (max 10MB).						
Declination: -35d00m00.0s	Ensure correct formatting of this string (+/-00d00m00.0s).						
Image peak / point flux in mJy 0.0	Rescale the image data with respect to new peak value.						
	Set to 0.0 for no rescaling of source model.						
Observation Setup:							
Observing mode: O Spectral Continuum	Spectral or continuum observations?						
Central frequency in GHz: 93.7	The value entered must be within an ALMA band.						
Bandwidth in MHz : 32	Select the total bandwidth for continuum observations.						
	Enter 7.5 GHz to select ALMA recommend full continuum setup.						
Use full Stokes parameters: 🔘 Yes 💿 No	If your input image contains more than one Stokes plane use them all (Yes), or just Stokes I (no/default).						
	This affects the noise in the final map. Ignored in continuum mode if "Use full						
Number of polarizations:	Stokes parameters" is set to yes.						
Required resolution in arcseconds: 1.0	OST will choose array config based on this value if <i>instrument</i> is set to ALMA.						
Pointing strategy: Mosaic	Selecting single will apply primary beam attenuation.						
On-source time in hours 🗘 : 3	Per pointing for Pointing Strategy = 'mosaic'.						
	Total time over all pointings Pointing Strategy = 'single' and 'User pointing'						
	See here for more information.						
Start hour angle: 0.0	Deviation of start of observation from transit.						
Number of visits: 1	How many times the observation is repeated.						
Include cycling to phase calibrator?: O Yes No	This affects the <i>uv</i> -coverage of your simulation.						

EUROPEAN ARC ALMA Regional Centre UK Job ID:	ALMA Observation 20180312015923HFPxI / Submitted by: wkwon@kasi.re.k	Download FITS file	40 90 90 90 90 90 90 90 90 90 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4		
The uploaded FITS file appears to have multiple	spectral channels or Stokes axes.	Dirty Beam				
Only the central frequency channel or first Stokes a		(Point Spread Function):	40 30	40		
The uploaded FITS file also appears to have mul Only the first Stokes axis have been extracted.	inpie Stokes axes.		20 0.75 10	20		
Overview			0.45 2 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Click thumbnails to view full-size images. Left: linea	r colour scale, right: with histogram equalization.		-30 0.15	² _{−20} −30		
Array configuration:	ALMA Cycle 5 C43-5 (1398 m baseline)		-40 40 30 20 10 0 -10 -20 -30 -40 Right Ascension / relative arcsec	-40 40 30 20 10 0 -10 -20 -30 -40 Right Accession / relative arcsec		
Source model:	NGC 1333 at 8 kpc	Coverage in the uv-plane:				
Input image:	40 30 30 30 30 30 30 30 30 30 3	Atmospheric transmission for				
Maximum elevation:	77.88 degrees	all bands (left) and				
Central frequency:	93.7 GHz (ALMA Band 3)	the selected band (right)	no finite in the second s			
Total Bandwidth:	0.032 GHz		Transfer	wood .		
Track length:	3 hours × 1.0 visits		0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 0.0 66 90 95 100 105 110 115		
Hexagonal mosaic pointings :	2 required to cover requested sky area with uniform sensitivity		10000000 y 10100	mapping y sina		
System temperature:	Tsys = 67.4355519482 K	Elevation vs time:	80	·		
PWV :	0.475 mm					
Theoretical RMS noise:	7.06283019575e-05 Jy (in naturally-weighted map)		n agou / quadrates			
Restoring beam (resolution):	Major axis = 0.835 arcsec, minor axis = 0.711 arcsec, PA = 82.026 deg		8 55 -			
For use with CASA simdata			50 - 45 0 0.5 1.0 1 Hour ang	is 20 25 30 Je / hours		

Summary

- ALMA proposals: technical justification
- ALMA simulator: CASA simulation tasks/tools simobserve simanalyze (simalma)

cf. Observation Support Tool http://almaost.jb.man.ac.uk