# 전파간섭계와 ALMA 소개

2019.07.29 — 08.02 소백산 천문대 2019 ALMA 여름학교

#### 권우진 Woojin Kwon





# Radio observations

• To achieve 1 arc-second resolution at  $\lambda = 500$  nm: D ~ 10 cm at  $\lambda = 1$  mm : D ~ 200 m

Difficulties in building a big radio telescope:
 1 The required tracking accuracy = A/10 but the

1. The required tracking accuracy ~  $\theta/10$  but the best mechanical tracking and pointing accuracy ~ 1" due to

- Gravitational sagging
- Antenna deformations caused by differential solar heating
- Wind gusts
- 2. Surface accuracy ~  $\lambda/20$

### What radio interferometers look like?

- •Arrays: e.g., JVLA, SMA, NOEMA, ALMA
- Very Long Baseline Interferometers: e.g., KVN





## ALMA 인류 역사상 가장 규모가 큰 천문대



### ALMA 인류 역사상 가장 규모가 큰 천문대

almaobservatory.org

Win NUMER



#### 2019 ALMA Summer School

# References

6

- Essential Radio Astronomy (3.7)
   J. J. Condon and S. M. Ransom, NRAO <u>https://science.nrao.edu/opportunities/courses/era/</u>
- Fundamentals of Radio Astronomy (ch. 5, 6) J. M. Marr, R. L. Snell, and S. E. Kurtz
- Tools of Radio Astronomy K. Rohlfs and T. L. Wilson
- Interferometry and Synthesis in Radio Astronomy
   A. Richard Thompson, James M. Moran, and George W. Swenson, Jr.
- Synthesis Imaging in Radio Astronomy Astronomical Society of the Pacific Conference Series (Volume 180)



# Fourier transform



# Fourier transform

$$F(s) \equiv \int_{-\infty}^{\infty} f(x) \ e^{-2\pi i s x} \ dx,$$
$$f(x) \equiv \int_{-\infty}^{\infty} F(s) \ e^{2\pi i s x} \ ds,$$

$$f(x) + g(x) \Leftrightarrow F(s) + G(s).$$

$$af(x) \Leftrightarrow aF(s).$$

$$f(x - a) \Leftrightarrow e^{-2\pi i a s} F(s).$$

$$f(ax) \Leftrightarrow \frac{F(s/a)}{|a|}.$$

$$f(x) \cos(2\pi \nu x) \Leftrightarrow \frac{1}{2}F(s - \nu) + \frac{1}{2}F(s + \nu).$$

$$\frac{df}{dx} \Leftrightarrow i2\pi sF(s).$$



### Convolution & Cross-correlation

#### •Convolution

$$h(x) = f * g \equiv \int_{-\infty}^{\infty} f(u) g(x - u) du.$$
$$f * g \Leftrightarrow F \cdot G.$$
 Convolution theorem



•Cross-correlation

$$f \star g \equiv \int_{-\infty}^{\infty} f(u) g(u - x) \, du. \qquad f \star g \Leftrightarrow \overline{F} \cdot G.$$
 Cross-correlation theorem

Auto-correlation

$$f \star f \Leftrightarrow \overline{F} \cdot F = |F|^2.$$

Wiener-Khinchin theorem

# FOV & $\theta_s$ of interferometers

- Optical telescopes: detectors with millions pixels
- Radio single dish antennas: one or a small number of receivers (e.g., TRAO SEQUOIA with 16 pixels)
- Interferometers:

e.g., ALMA 12 m antennas over 12 km in Band 6 (~1.2 mm) FOV ~  $\lambda$ /D ~ 20"

 $\theta_s \sim \lambda/(\text{longest baseline}) \sim 0.02"$ ==> 10<sup>6</sup> "pixels"

## Quasi-monochromatic 2-element interferometer



- "General" case!
- Quasi-monochromatic condition:  $\Delta \nu \ll 1/\tau_g$
- **Correlator**: multiply and time-average



ю,

Ď

 $V_1 = V \cos[\omega(t - \tau_g)] \bigvee V_2 = V \cos(\omega t)$ 

 $V_1V_2$ 

 $R - (V^2/2)\cos(\omega \tau_g)$ 

1.0

5

# Output of correlator

 $V_1 = V \cos[\omega (t - \tau_g)]$  and  $V_2 = V \cos(\omega t)$ .



 $\cos x \cos y = \left[\cos(x+y) + \cos(x-y)\right]/2$ 

$$\Delta t \gg (2\omega)^{-1}$$
$$R = \langle V_1 V_2 \rangle = \left(\frac{V^2}{2}\right) \cos(\omega \tau_g).$$

50

Fringes

• Fringes: sinusoidal correlator output

• Fringe phase

$$\begin{split} \phi &= \omega \tau_{g} = \frac{\omega}{c} b \cos \theta \\ \frac{d\phi}{d\theta} = \frac{\omega}{c} b \sin \theta \\ &= 2\pi \left(\frac{b \sin \theta}{\lambda}\right) \end{split}$$

The **fringe period**  $\Delta \phi = 2\pi$  corresponds to an angular shift  $\Delta \theta = \lambda / (b \sin \theta)$ .

Depending on projected baselines Good image?

## Sensitive Scales of Fringes





## More antennas better image



# Complex correlator

- Slightly extended sources  $(I = I_E + I_O)$ 
  - "cosine" correlator sensitive to even (inversion symmetric) structure
  - "sine" correlator sensitive to odd (anti-symmetric) structure

$$R_{\rm c} = \int I(\hat{s}) \cos(2\pi\nu\vec{b}\cdot\hat{s}/c)d\Omega = \int I(\hat{s}) \cos(2\pi\vec{b}\cdot\hat{s}/\lambda)d\Omega$$
$$R_{\rm s} = \int I(\hat{s}) \sin(2\pi\vec{b}\cdot\hat{s}/\lambda)d\Omega$$

- Complex correlator: combination of cosine and sine correlators cf. Euler's formula  $e^{i\phi} = \cos \phi + i \sin \phi$
- Complex visibility

$$\mathcal{V} \equiv R_{\rm c} - iR_{\rm s} \qquad \qquad \mathcal{V} = Ae^{-i\phi}$$

$$A = (R_{\rm c}^2 + R_{\rm s}^2)^{1/2}$$
  
$$\phi = \tan^{-1} (R_{\rm s}/R_{\rm c})$$

$$\mathcal{V} = \int I(\hat{s}) \exp\left(-i2\pi \vec{b} \cdot \hat{s}/\lambda\right) \ d\Omega$$

# Bandwidth smearing

17

Quasi-monochromatic interferometers
 => interferometers with finite bandwidths and integration times

$$\begin{aligned} \mathscr{V} &= \int \left[ \int_{\nu_{\rm c} - \Delta \nu/2}^{\nu_{\rm c} + \Delta \nu/2} I_{\nu}(\hat{s}) \exp(-i2\pi \vec{b} \cdot \hat{s}/\lambda) \, d\nu \right] d\Omega \\ &= \int \left[ \int_{\nu_{\rm c} - \Delta \nu/2}^{\nu_{\rm c} + \Delta \nu/2} I_{\nu}(\hat{s}) \exp(-i2\pi \nu \tau_{\rm g}) \, d\nu \right] d\Omega. \end{aligned}$$
$$\\ \mathscr{V} &\approx \int I_{\nu}(\hat{s}) \operatorname{sinc} (\Delta \nu \tau_{\rm g}) \exp(-i2\pi \nu_{\rm c} \tau_{\rm g}) d\Omega. \end{aligned}$$

• Instrumental delay  $\tau_0$  to minimize the attenuation

$$\begin{aligned} |\tau_0 - \tau_g| \ll (\Delta t) \\ c\tau_g = \vec{b} \cdot \vec{s} = b \ c \end{aligned} \qquad \Delta \nu \ll \frac{\nu \theta_s}{\Delta \theta} = \frac{1.5 \times 10^9 \text{ Hz} \cdot 4 \text{ arcsec}}{900 \text{ arcsec}} \approx 7 \text{ MHz}. \end{aligned}$$





# Integration time smearing

18



Visibility

- •Now, assuming an interferometer with a negligible bandwidth attenuation
- •Visibility: data of interferometers (Fourier transform of an image)

$$\mathcal{V} \approx \int I_{\nu}(\hat{s}) \operatorname{sinc} (\Delta \nu \tau_{g}) \exp(-i2\pi \nu_{c} \tau_{g}) d\Omega.$$

 $V \approx \int A(\hat{s}) I_{\nu}(\hat{s}) \exp(-i2\pi\nu\tau) d\Omega$ 

Steering antenna with an instrumental delay

 $au = au_g - au_i$ Phase center s $_0$  $\hat{s} = \hat{s_0} + \hat{\sigma}$ 

$$= \int A(\hat{s}) I_{\nu}(\hat{s}) \exp\left[-i2\pi\nu\left(\frac{\vec{b}\cdot\hat{s}}{c}-\tau_{i}\right)\right] d\Omega$$
$$= \exp\left[-i2\pi\nu\left(\frac{\vec{b}\cdot\hat{s}_{0}}{c}-\tau_{i}\right)\right] \int A(\hat{s}) I_{\nu}(\hat{s}) \exp\left[-i2\pi\nu\left(\frac{\vec{b}\cdot\hat{\sigma}}{c}\right)\right] d\Omega$$

$$V = \int A(\hat{s}) I_{\nu}(\hat{s}) \exp\left[-i2\pi\nu\left(\frac{\vec{b}\cdot\hat{\sigma}}{c}\right)\right] d\Omega$$

# Visibility

- •Now, assuming an interferometer with a negligible bandwidth attenuation
- •Visibility: data of interferometers (Fourier transform of an image)

$$\mathcal{V} \approx \int I_{\nu}(\hat{s}) \operatorname{sinc} (\Delta \nu \tau_{g}) \exp(-i2\pi \nu_{c} \tau_{g}) d\Omega.$$

 $V \approx \int A(\hat{s}) I_{\nu}(\hat{s}) \exp(-i2\pi\nu\tau) d\Omega$ 

$$= \int A(\hat{s}) I_{\nu}(\hat{s}) \exp[-i2\pi\nu \left(\frac{\vec{b}\cdot\hat{s}}{c} - \tau_{i}\right) \frac{\vec{b}\cdot\hat{s}}{c} - \tau_{i}$$

$$= \exp\left[-i2\pi\nu\left(\frac{b\cdot\hat{s}_0}{c}-\tau_i\right)\right] \int A(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s})I_{\nu}(\hat{s$$

$$V = \int A(\hat{s}) I_{\nu}(\hat{s}) \exp\left[-i2\pi\nu\left(\frac{\vec{b}\cdot\hat{\sigma}}{c}\right)\right] d\Omega$$

Steering antenna with an instrumental delay

 $au = au_g - au_i$ Phase center s $_0$  $\hat{s} = \hat{s_0} + \hat{\sigma}$ 



## Interferometers in 3D

$$V = \int A(\hat{s}) I_{\nu}(\hat{s}) \exp[-i2\pi\nu \left(\frac{\vec{b}\cdot\hat{\sigma}}{c}\right)] d\Omega$$

$$\begin{aligned} 2\pi\nu\frac{\vec{b}}{c} &= 2\pi\frac{\vec{b}}{\lambda} = 2\pi(u,v,w) \\ \hat{\sigma} &= (l,m,n) \\ d\Omega &= \frac{dl\,dm}{\sqrt{1-l^2-m^2}} \end{aligned}$$

$$V(u, v, w) = \int \int \frac{A(l, m)I(l, m)}{\sqrt{1 - l^2 - m^2}} \exp[-i2\pi(ul + vm + w\sqrt{1 - l^2 - m^2})] \, dl \, dm$$
$$\sqrt{1 - l^2 - m^2} \approx 1$$
$$V(u, v, w) = \exp(-i2\pi w) \int \int A(l, m)I(l, m) \, \exp[-i2\pi(ul + vm)] \, dl \, dm$$

Woojin Kwon

$$InterferometerV = \int A(\hat{s})I_{\nu}(\hat{s})\exp[-i2\pi\nu\left(\frac{\vec{b}\cdot\hat{\sigma}}{c}\right)]$$
$$2\pi\nu\frac{\vec{b}}{c} = 2\pi\frac{\vec{b}}{\lambda} = 2\pi(u, v, w)$$
$$\hat{\sigma} = (l, m, n)$$
$$d\Omega = \frac{dl\,dm}{\sqrt{1 - l^2 - m^2}}$$

$$V(u, v, w) = \int \int \frac{A(l, m)I(l, m)}{\sqrt{1 - l^2 - m^2}} \exp[-i2\pi(ul) \sqrt{1 - l^2 - m^2} \approx 1]$$
$$V(u, v, w) = \exp(-i2\pi w) \int \int A(l, m)I(l, m)$$



# Visibility and Image

#### •(Inverse) Fourier transformation

On w = 0 plane:

$$V(u,v) = \int \int A(l,m)I(l,m) \exp[-i2\pi(ul+vm)] \, dl \, dm$$

$$V(u,v) \Rightarrow A(l,m)I(l,m)$$

$$S(u,v)V(u,v) \Rightarrow FT^{-1}[S(u,v)] * FT^{-1}[V(u,v)]$$

$$S(u,v)V(u,v) \implies B_D(l,m) * [A(l,m)I(l,m)]$$

# Sensitivity

• A single antenna

$$\sigma_S = \frac{2kT_s}{A_e(\Delta\nu\,\tau)^{1/2}}$$

• A two-element interferometer

$$\sigma_S = \frac{2^{1/2} k T_s}{A_e (\Delta \nu \tau)^{1/2}}$$

A N-element interferometer: N(N-1)/2 independent paris

$$\sigma_S = \frac{2kT_s}{A_e[N(N-1)\,\Delta\nu\,\tau]^{1/2}}$$

## Interferometric observations

- Calibrators
   Flux (also called amplitude) calibrator
   Bandpass calibrator
   Phase calibrator
- A typical sequence Flux cal. —> Bandpass cal. —> Phase cal. and science target cycles (e.g., 10 min period) —> Last phase cal.



**Observing Schedule** 

# From raw data to image

- ALMA provides images ready for sciences and reduction scripts!
- Calibration: to have all antennas phased up
  - Bandpass calibration
  - Flux (amplitude) calibration
  - Phase calibration



Woojin Kwon

- Imaging: from calibrated visibilities to images
  - Inverse Fourier transform
  - Deconvolution
  - Primary beam correction

 $S(u,v)V(u,v) \Rightarrow B_D(l,m) * [A(l,m)I(l,m)]$ 

# Take-home messages

28

- Interferometry samples Fourier components of sky brightness: visibilities
- Images are made by Fourier transforming sampled visibilities
   images are not unique
  - limited scales of detected structures due to missing visibilities

 $S(u,v)V(u,v) \implies B_D(l,m) * [A(l,m)I(l,m)]$ 

Slides captured from Imaging and Deconvolution 15th Synthesis Imaging Workshop David J. Wilner (CfA)

### Visibility and Sky Brightness

- V(u,v), the complex visibility function, is the 2D Fourier transform of T(l,m), the sky brightness distribution (for incoherent source, small field of view, far field, etc.) [for derivation from van Cittert-Zernike theorem, see TMS Ch. 14]
- $m_{-}$ mathematically N Pole  $V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)} dldm$ T(I,m)  $T(l,m) = \int \int V(u,v)e^{i2\pi(ul+vm)}dudv$ u, v are E-W, N-S spatial frequencies [wavelengths] *I,m* are E-W, N-S angles in the tangent plane [radians] (recall  $e^{ix} = \cos x + i \sin x$ ) w  $V(u,v) \xrightarrow{\mathcal{F}} T(l,m)$



### Visibilities

- each V(u,v) is a complex quantity
  - expressed as (real, imaginary) or (amplitude, phase)



each V(u,v) contains information on T(l,m) everywhere,
 not just at a given (l,m) coordinate or within a particular subregion



### **Example 2D Fourier Transforms**





#### narrow features transform into wide features (and vice-versa)

### **Example 2D Fourier Transforms**

T(l,m)

uniform

disk

 $\mathcal{F}_{\mathbf{v}}$ 

V(u,v) amplitude

Bessel function





#### sharp edges result in many high spatial frequencies

### **Amplitude and Phase**

NRA(

- amplitude tells "how much" of a certain spatial frequency
- phase tells "where" this spatial frequency component is located



### The Visibility Concept

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$

- visibility as a function of baseline coordinates (*u*,*v*) is the Fourier transform of the sky brightness distribution as a function of the sky coordinates (*l*,*m*)
- V(u=0,v=0) is the integral of T(l,m) dldm = total flux density
- since T(l,m) is real,  $V(-u,-v) = V^*(u,v)$ 
  - V(u,v) is Hermitian
  - get two visibilities for one measurement



### **Small Source, Short Baseline**

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$




## **Small Source, Short Baseline**

$$V(u,v) = \int \int T(l,m) e^{-i2\pi(ul+vm)} dldm$$





NRAO

.

## **Small Source, Long Baseline**

$$V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$$



# 

## Large Source, Short Baseline

NRAO

$$V(u,v) = \int \int T(l,m) e^{-i2\pi(ul+vm)} dl dm$$



## Large Source, Long Baseline

$$V(u,v) = \int \int T(l,m) e^{-i2\pi(ul+vm)} dl dm$$





Large Source, Long Baseline

$$V(u,v) = \int \int T(l,m) e^{-i2\pi(ul+vm)} dl dm$$





## **Aperture Synthesis Basics**

- idea: sample V(u,v) at enough (u,v) points using distributed small aperture antennas to synthesize a large aperture antenna of size  $(u_{max}, v_{max})$
- one pair of antennas = one baseline

= two (u,v) samples at a time

- N antennas = N(N-I) samples at a time
- use Earth rotation to fill in (u,v) plane over time (Sir Martin Ryle, 1974 Nobel Prize in Physics)



Sir Martin Ryle 1918-1984

- reconfigure physical layout of N antennas for more samples
- observe at multiple wavelengths for more (*u*,*v*) plane coverage, for source spectra amenable to simple characterization ("multi-frequency synthesis")
- if source is variable in time, then be careful



## A few Aperture Synthesis Telescopes for Observations at Millimeter Wavelengths





### 2 Antennas, I Min



15th Synthesis Imaging Workshop

NRAO

## 3 Antennas, I Min



15th Synthesis Imaging Workshop

## 4 Antennas, I Min



### 7 Antennas, I Min



7 Antennas, 10 min



7 Antennas, I hour





15th Synthesis Imaging Workshop

## 7 Antennas, 3 hours



15th Synthesis Imaging Workshop

NRAO

### 7 Antennas, 8 hours



NRAC

## COM configurations of 7 SMA antennas, v = 345 GHz, dec = +22 deg



15th Synthesis Imaging Workshop

EXT configurations of 7 SMA antennas, v = 345 GHz, dec = +22 deg



15th Synthesis Imaging Workshop

## VEX configuration of 6 SMA antennas, v = 345 GHz, dec = +22 deg



# Implications of (u,v) Plane Sampling

samples of V(u,v) are limited by number of antennas and by Earth-sky geometry



NRA

- outer boundary
  - no information on smaller scales
  - resolution limit
- inner hole
  - no information on larger scales
  - extended structures invisible
  - irregular coverage between boundaries
    - sampling theorem violated
    - information missing



# Inner and Outer (u,v) Boundaries



V(u,v) amplitude

V(u,v) phase



 $\xrightarrow{\mathcal{F}}$ 

V(u,v) phase

T(l,m)



T(l,m)



# Formal Description of Imaging

 $V(u,v) \xrightarrow{\mathcal{F}} T(l,m)$ 

• sample Fourier domain at discrete points

$$S(u,v) = \sum_{k=1}^{M} \delta(u - u_k, v - v_k)$$

- Fourier transform sampled visibility function  $V(u,v)S(u,v) \xrightarrow{\mathcal{F}} T^D(l,m)$
- apply the convolution theorem  $T(l,m) * s(l,m) = T^D(l,m)$ where the Fourier transform of the sampling pattern  $s(l,m) \xrightarrow{\mathcal{F}} S(u,v)$  is the "point spread function"

the Fourier transform of the sampled visibilities yields the true sky brightness convolved with the point spread function

radio jargon: the "dirty image" is the true image convolved with the "dirty beam"



## **Dirty Beam and Dirty Image**



- introduce weighting function W(u,v)
  - modifies sampling function
  - $S(u,v) \rightarrow S(u,v)W(u,v)$
  - changes s(l,m), the dirty beam
  - CASA clean "weighting"
- "natural" weighting
  - $W(u,v) = 1/\sigma^2$  in occupied cells, where  $\sigma^2$  is the noise variance
  - maximizes point source sensitivity
  - lowest rms in image
  - generally gives more weight to short baselines, so the angular resolution is degraded







- "uniform" weighting
  - W(u,v) inversely proportional to local density of (u,v) samples
  - weight for occupied cell = const
  - fills (u,v) plane more uniformly and dirty beam sidelobes are lower
  - gives more weight to long baselines, so angular resolution is enhanced
  - downweights some data, so point source sensitivity is degraded
  - n.b. can be trouble with sparse (u,v)
    coverage: cells with few samples
    have same weight as cells with many







- "robust" (or "Briggs") weighting
  - variant of uniform weighting that avoids giving too much weight to cells with low natural weight
  - software implementations differ
  - e.g.  $W(u, v) = \frac{1}{\sqrt{1 + S_N^2/S_{thresh}^2}}$   $S_N$  is cell natural weight  $S_{thresh}$  is a threshold high threshold  $\rightarrow$  natural weight low threshold  $\rightarrow$  uniform weight
- an adjustable parameter allows for continuous variation between maximum point source sensitivity and resolution







## **ALMA C40-4 Configuration Resolution?**



Figure 7.6: Angular resolution achieved using different values of the CASA robust parameter for a 1-hour observation at 100 GHz and a declination of -23 deg in the C40-4 configuration. Note that robust = -2 is close to uniform weighting and robust = 2 is close to natural weighting. The dotted line corresponds to  $\frac{\lambda}{L_{max}}$ . ALMA Cycle 4 Technical Handbook

NRA(

- uvtaper
  - apodize (u,v) sampling by a Gaussian

$$W(u,v) = \exp\left(-\frac{(u^2 + v^2)}{t^2}\right)$$

t = adjustable tapering parameter

- like convolving image by a Gaussian
- gives more weight to short baselines, degrades angular resolution
- downweights data at long baselines,
  so point source sensitivity degraded
- may improve sensitivity to extended structure sampled by short baselines
- limits to usefulness







## Visibility Weighting and Image Noise



## **Deconvolution Algorithms**

- use non-linear techniques to interpolate/extrapolate samples of V(u,v) into unsampled regions of the (u,v) plane
- aim to find a sensible model of T(l,m) compatible with data
- requires a priori assumptions about T(I.m) to pick plausible "invisible" distributions to fill unsampled parts of (*u*,*v*) plane
- "clean" is by far the dominant deconvolution algorithm in radio astronomy
- a very active research area, e.g. compressed sensing,



# Classic Högborn (1974) clean Algorithm

*a priori* assumption: *T(l,m)* is a collection of point sources

initialize a *clean component* list initialize a *residual image* = dirty image

- I. identify the highest peak in the residual image as a point source
- subtract a scaled dirty beam
  s(l,m) x "loop gain" from this peak
- 3. add this point source location and amplitude to the *clean component* list
- 4. goto step I (an iteration) unless stopping criterion reached



# Classic Högborn (1974) clean Algorithm

- stopping criterion
  - residual map maximum < threshold = multiple of rms , e.g. 2 x rms (if noise limited)</li>
  - residual map maximum < threshold = fraction of dirty map maximum (if dynamic range limited)
- loop gain parameter
  - good results for g=0.1 (CASA clean default)
  - lower values can work better for smoother emission
- finite support
  - easy to include a priori information about where in dirty map to search for clean components (CASA clean "mask")
  - very useful but potentially dangerous



# Classic Högborn (1974) clean Algorithm

- last step is to create a final "restored" image
  - make a model image with all point source *clean components*
  - convolve point source model image with a "clean beam", an elliptical Gaussian fit to the main lobe of the dirty beam
  - add back residual map with noise and structure below the threshold
- restored image is an estimate of the true sky brightness T(l,m)
  - units of the restored image are (mostly) Jy per clean beam area
    intensity, or brightness temperature
- Schwarz (1978) showed that clean is equivalent to a least squares fit of sinusoids to visibilities in the case of no noise







 $T^{D}(l,m)$ 

### 30 clean components

### residual map









15th Synthesis Imaging Workshop



### 300 clean components

### residual map





15th Synthesis Imaging Workshop
### clean example



#### threshold reached



15th Synthesis Imaging Workshop

### clean example

#### $T^{D}(l,m)$

#### restored image



#### final image depends on

imaging parameters (pixel size, visibility weighting scheme, gridding) and deconvolution (algorithm, iterations, masks, stopping criteria)



### **Results from Different Weighting Schemes**



#### 15th Synthesis Imaging Workshop

## **Missing Short Baselines: Demonstration**

- important structure may be missed in central hole of (u,v) plane
- Do the visibilities observed in our example discriminate between these two models of sky brightness *T(l,m)*?



• Yes... but only on baselines shorter than about 75 k $\lambda$ 



### **Missing Short Baselines: Demonstration**

T(l,m)

natural weight

> 75 k $\lambda$  natural weight



#### 15th Synthesis Imaging Workshop

### ALMA "Maximum Recoverable Scale"

#### • adopted to be 10% of the total flux density of a uniform disk (not much!)

|               | Band                    | 3     | 4     | 6     | 7     | 8     | 9     | 10    |
|---------------|-------------------------|-------|-------|-------|-------|-------|-------|-------|
|               | Frequency (GHz)         | 100   | 150   | 230   | 345   | 460   | 650   | 870   |
| Configuration |                         |       |       |       |       |       |       |       |
| 7-m           | $\theta_{res}$ (arcsec) | 12.5  | 8.4   | 5.4   | 3.6   | 2.7   | 1.9   | 1.4   |
|               | $\theta_{MRS}$ (arcsec) | 66.7  | 44.5  | 29.0  | 19.3  | 14.5  | 10.3  | 7.7   |
| C40-1         | $\theta_{res}$ (arcsec) | 3.7   | 2.5   | 1.6   | 1.1   | 0.80  | 0.57  | 0.42  |
|               | $\theta_{MRS}$ (arcsec) | 29.0  | 19.4  | 12.6  | 8.4   | 6.3   | 4.5   | 3.3   |
| C40-2         | $\theta_{res}$ (arcsec) | 2.4   | 1.6   | 1.0   | 0.69  | 0.52  | 0.37  | 0.27  |
|               | $\theta_{MRS}$ (arcsec) | 22.1  | 14.8  | 9.6   | 6.4   | 4.8   | 3.4   | 2.5   |
| C40-3         | $\theta_{res}$ (arcsec) | 1.5   | 0.97  | 0.63  | 0.42  | 0.32  | 0.22  | 0.17  |
|               | $\theta_{MRS}$ (arcsec) | 13.7  | 9.1   | 5.9   | 4.0   | 3.0   | 2.1   | 1.6   |
| C40-4         | $\theta_{res}$ (arcsec) | 0.93  | 0.62  | 0.40  | 0.27  | 0.20  | 0.14  | 0.11  |
|               | $\theta_{MRS}$ (arcsec) | 8.9   | 5.9   | 3.9   | 2.6   | 1.9   | 1.4   | 1.0   |
| C40-5         | $\theta_{res}$ (arcsec) | 0.54  | 0.36  | 0.23  | 0.16  | 0.12  | 0.083 | 0.062 |
|               | $\theta_{MRS}$ (arcsec) | 6.0   | 4.0   | 2.6   | 1.7   | 1.3   | 0.93  | 0.69  |
| C40-6         | $\theta_{res}$ (arcsec) | 0.35  | 0.23  | 0.15  | 0.10  | 0.076 | 0.054 | 0.040 |
|               | $\theta_{MRS}$ (arcsec) | 3.1   | 2.1   | 1.3   | 0.90  | 0.67  | 0.48  | 0.36  |
| C40-7         | $\theta_{res}$ (arcsec) | 0.21  | 0.14  | 0.090 | 0.060 | 0.045 | 0.032 | 0.024 |
|               | $\theta_{MRS}$ (arcsec) | 1.8   | 1.2   | 0.77  | 0.52  | 0.39  | 0.27  | 0.20  |
| C40-8         | $\theta_{res}$ (arcsec) | 0.12  | 0.079 | 0.052 | 0.034 | -     | -     | -     |
|               | $\theta_{MRS}$ (arcsec) | 1.3   | 0.87  | 0.57  | 0.38  | -     | -     | -     |
| C40-9         | $\theta_{res}$ (arcsec) | 0.066 | 0.044 | 0.029 | -     | -     | -     | -     |
|               | $\theta_{MRS}$ (arcsec) | 0.78  | 0.52  | 0.34  | -     | -     | -     | -     |

Table 7.1: Resolution ( $\theta_{res}$ ) and maximum recoverable scale ( $\theta_{MRS}$ ) for the 7-m Array and 12-m Array configurations available during Cycle 4 as a function of a representative frequency in a band. The value of  $\theta_{MRS}$  is computed using L05 from Table 7.2 and equation 7.7; the value of  $\theta_{res}$  is the mean size of the interferometric beam obtained through simulation with CASA, using Briggs uv-plane weighting with *robust=0.5*. (This value of *robust* offers a compromise between natural and uniform.) The computations were done for a source at zenith; for sources transiting at lower elevations, the North-South angular measures will increase proportional to  $1/\sin(\text{ELEVATION})$ .

68



# Techniques to Obtain Short Baselines (I)

#### use a large single dish telescope



- all Fourier components from 0 to D sampled, where D is dish diameter (weighting depends on illumination)
- scan single dish across sky to make an image T(l,m) \* A(l,m) where A(l,m) is the single dish response pattern
- Fourier transform single dish image, T(l,m) \* A(l,m), to get V(u,v)a(u,v) and then divide by a(u,v) to estimate V(u,v) for baselines < D</li>
- choose D large enough to overlap interferometer samples of V(u,v)and avoid using data where a(u,v) becomes small



# Techniques to Obtain Short Spacings (II)

use a separate array of smaller antennas

- small antennas can observe short baselines inaccessible to larger ones
- the larger antennas can be used as single dish telescopes to make images with Fourier components not accessible to the smaller antennas
- example: ALMA main array + ACA

```
main array
50 x 12m: 12m to 14+ km
```

ACA 12 x 7m: covers 7-12m 4 x 12m single dishes: 0-7m





## **Concluding Remarks**

- interferometry samples Fourier components of sky brightness
- make an image by Fourier transforming sampled visibilities
- deconvolution attempts to correct for incomplete sampling
- remember
  - there are an infinite number of images compatible with the visibilities
  - missing (or corrrupted) visibilities affect the entire image
  - astronomers must use judgement in imaging and deconvolution
- it's fun and worth the trouble  $\rightarrow$  high resolution images!

many, many issues not covered in this talk, see references



## Atacama Large Millimeter/submillimeter Array

- The largest ground-based astronomical facility
- 50 12-m, 12 7-m, 4 12-m = 66 antennas
- ~5000 m in altitude, Chajnantor plateau, Chile
- East Asia, Europe, North America, & Chile
- <u>https://almascience.org</u>



# ALMA full Operation's Specifications

|                                        | Specification                                                                         |
|----------------------------------------|---------------------------------------------------------------------------------------|
| Number of Antennas                     | 50×12 m (12-m Array), plus 12×7 m & 4×12 m (ACA)                                      |
| Maximum Baseline Lengths               | 0.16 - 16.2 km                                                                        |
| Angular Resolution (")                 | $\sim 0.2'' \times (300/v \text{ GHz}) \times (1 \text{ km} / \text{ max. baseline})$ |
| 12 m Primary beam (")                  | $\sim 20.6'' \times (300/_{V} GHz)$                                                   |
| 7 m Primary beam (")                   | $\sim 35'' \times (300/v \ GHz)$                                                      |
| Number of Baselines                    | Up to 1225 (ALMA correlators can handle up to 64 antennas)                            |
| Frequency Coverage                     | All atmospheric windows from 84 GHz - 950 GHz                                         |
|                                        | (with extension to ~30 GHz when Bands 1 and 2 are deployed)                           |
| Correlator: Total Bandwidth            | 16 GHz (2 polarizations × 4 basebands × 2 GHz/baseband)                               |
| <b>Correlator:</b> Spectral Resolution | As narrow as $0.008 \times (300/\nu \text{ GHz}) \text{ km/s}$                        |
| Polarimetry                            | Full Stokes parameters                                                                |

#### 2019 ALMA Summer School

Primary

Beam (FOV; ")

73-53

49-38

37-29

29-22

22-16

16-12

10-8.5

7.8-6.5



# 2019 Radio meetings

- •Townhall meetings March & April
- ALMA Summer School
- •2019 Radio Summer School August 27—29
- •2019 Radio Telescope User's Meeting August 29—30