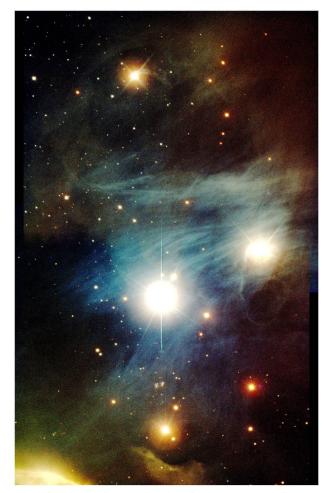

Examine HCO+ absorption spectra toward continuum sources located behind the Chamaeleon molecular cloud in the Milky Way to study the physical conditions of the "Dark Neutral Medium (DNM)" that is not traced by CO(1-0) emission


(reference: Liszt et al. 2018, A&A, 617,54)

2020 Alma Summer School Group 1 (lead by Min-Young Lee) Shinna Kim, Jaekyun Park, Suyeon Son

Chamaeleon Complex

Distance : ~ 160 pc

 The Chamaeleon I complex (VLT UT1 + FORS1)

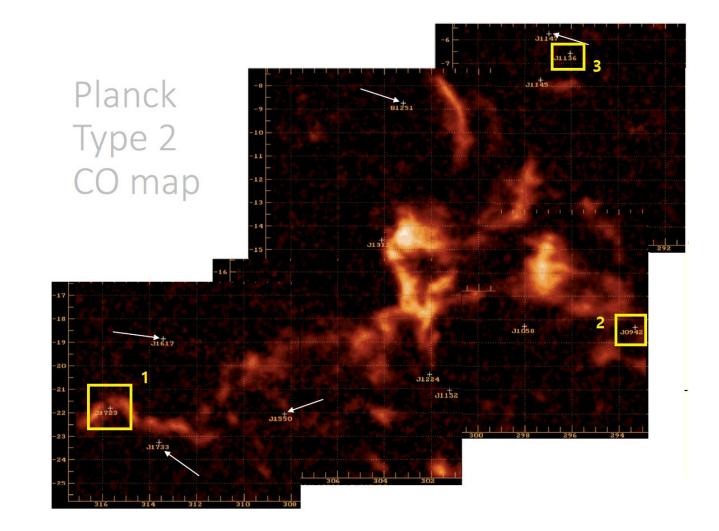
 ESO PR Photo 17c/99 (6 March 1999)

 © European Southern Observatory

Dark Neutral Medium

• H₂ total column density

• H tracers - HI & CO


- Not detected gas \rightarrow DNM (Dark Neutral Medium)
- optically thick H atom
- CO-dark hydrogen molecule

HCO+ absorption spectrum

• Absorption spectrum \rightarrow calculate H₂ column density

• HCO⁺ (J = 1 - 0) line toward the 13 continuum sources

• 13 AGNs in the outskirts of Chamaeleon

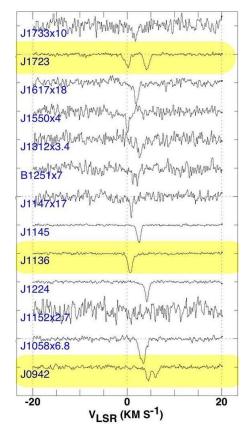
Radiative Transfer Equation

$$I^{ON} = I_{bg}e^{-\tau} + I_g (1 - e^{-\tau})$$
$$I^{OFF} = I_g (1 - e^{-\tau})$$
$$I^{ON} - I^{OFF} = I_{bg}e^{-\tau}$$

● Interferometer → only compact source is observable

$$I^{ON} = I_{bg} e^{-\tau}$$

ALMA is suitable for observing abs spectrum in continuum source

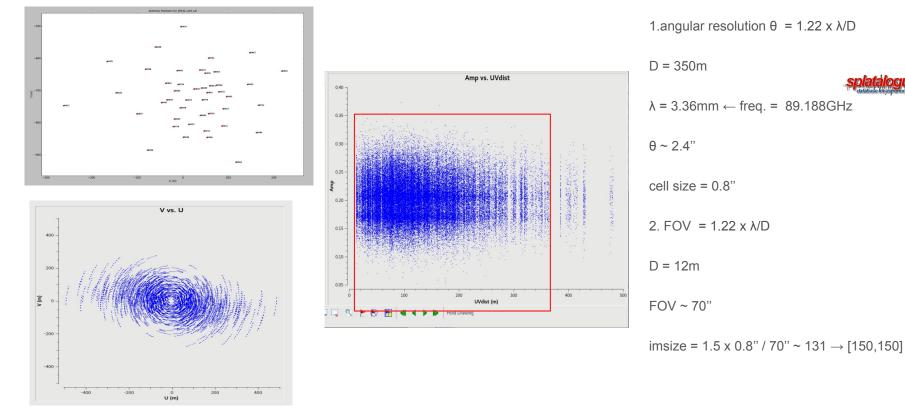

AGN as a continuum source

- Sensitivity
- depends on continuum source intensity

$$-ln\left(\frac{I^{ON}}{I_{bg}}\right) = \Delta\tau$$

- Angular resolution (of interferometric absorption line)
- size of the background source (= milliarcsecs in radio)
- smaller than beam size \rightarrow 'pencil-beam measurement'

Data Information


 $1.JXXXX.Cont.cal \rightarrow AGN \ continuum$

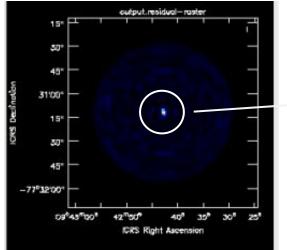
2. JXXXX.**HCO+**.cal.contsub \rightarrow HCO+ absorption line

0bs	erver: hliszt	t Pi	roject:	uid://	A001/X	5ac/X77	8											
bserv	ation: ALMA																	
Comput	ing scan and	subscar	n prope	rties														
Data r	ecords: 94600	9	Total o	elapsed	time =	= 2977.	1 second	s										
0bs	erved from	01-Jan	-2017/1	6:15:53	.7 to	0 01-	Jan-2017	/17:05:	30.8 (UTC)									
0bs	ervationID =	0	Arra	ayID =	0													
Date	Timer	range (I	JTC)		Scan I	FldId F	ieldName		nRows		SpwI	ds Av	erage Int	erval(s)	ScanI	ntent		
01-J	an-2017/16:15	5:53.7	- 16:17	:24.4	9	0 J	1723-771	3-350	14	190	[0]	[6.05]	[OBSERVE	TARGET#ON_	SOURCE]		
	16:24	1:03.2	- 16:25	:33.9	14	0 J	1723-771	3-350	14	190	[0]			_TARGET#ON_				
	16:32	2:39.4	- 16:34	:10.1	19	0 J	1723-771	3-350	14	190	[0]	[6.05]	[OBSERVE	TARGET#ON_	SOURCE]		
	16:42	2:00.1	- 16:43	:30.8	25	0 J	1723-771	3-350	14	190	[0]	[6.05]	[OBSERVE	_TARGET#ON_	SOURCE]		
	16:50	9:38.3	- 16:52	:09.0	30	0 J	1723-771	3-350	14	190	[0]	[6.05]	[OBSERVE	TARGET#ON_	SOURCE]		
	16:59	9:40.8	- 17:01	:11.6	36	0 J	1723-771	3-350	14	190	[0]	[6.05]	[OBSERVE	_TARGET#ON_	SOURCE]		
	17:04	1:30.3	- 17:05	:30.8	40	0 J	1723-771	3-350	9	460	[0]	[6.05]	[OBSERVE	TARGET#ON_	SOURCE]		
	(nRows =	= Total	number	of row	s per s	scan)												
ields	: 1																	
ID	Code Name		1	RA		Dec	ι	Epo	ch SrcId		nRow	S						
θ	none J1723-7	713-35	э :	17:23:5	0.8450	90 -77.	13.50.54	000 ICR	S 0		9460	0						
pectr	al Windows:	(1 unio	que spe	ctral w	indows	and 1	unique p	olariza	tion setups)								
SpwI	D Name						#Chans	Frame	Ch0(MHz)	Cha	nWid(kHz) T	otBW(kHz)	CtrFreq(MH	z) BBC	Num	Cor	rs
0	X137081282	4#ALMA	RB_03#	BB_4#SW	-02#FUI	LL_RES	1920	TOPO	89217.359		-30	.518	58593.8	89188.077	0	4	XX	YY
ource	s: 1																	
ID	Name		SpwId	RestFr	eq (MHz)) SysV	el(km/s)											
θ	J1723-7713-3	350	0	89188.	526	0												

H. Liszt et al. 2018

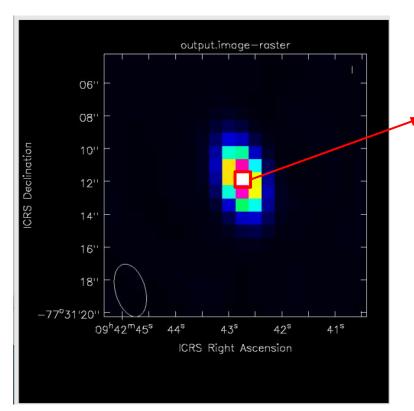
Angular Resolution / Field Of View (FOV)

antenna tracks in uv plane


tclean (continuum)

cell = '0.8arcsec'

specmode = 'mfs'


pbcor = False

```
weighting = 'natural'
```


tclean (continuum image)

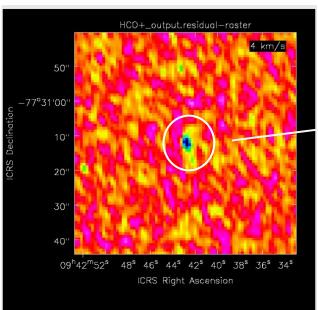
compact \rightarrow unresolved source

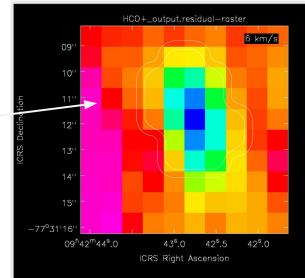
observed peak brightness = 0.185553 [Jy/beam] Intensity: 0.203 [Jy] (H. Liszt et al. 2018)

tclean (HCO+ absorption)

cell = '0.8arcsec'

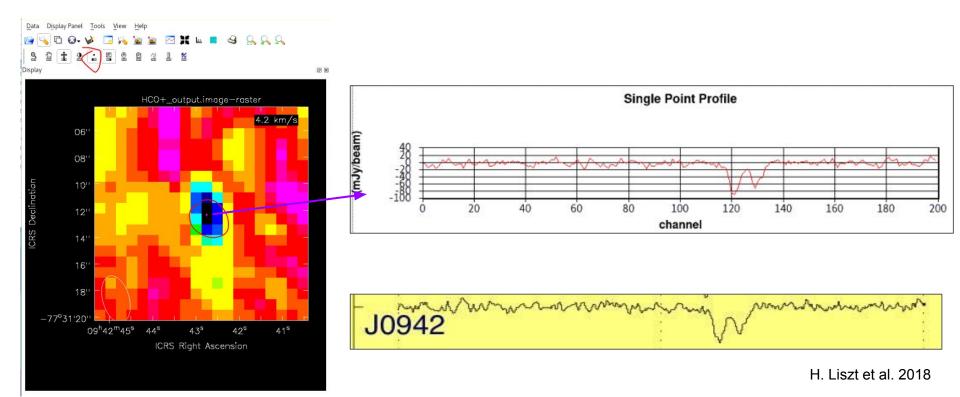
specmode = 'cube'


pbcor = False


weighting = 'natural'

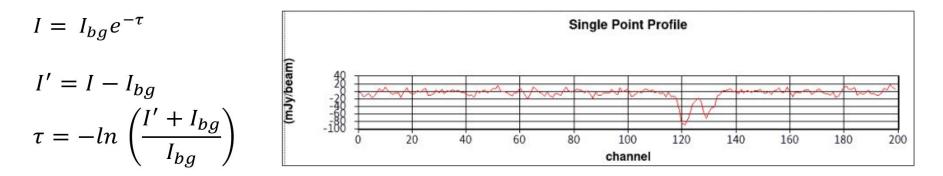
width = (0.2 km/s)

start = '-20km/s'

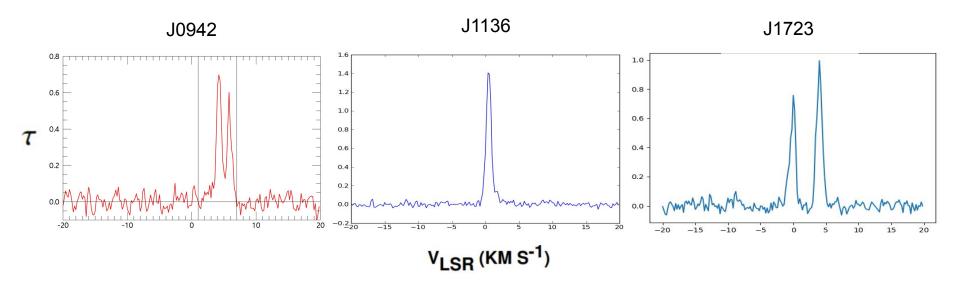

nchan = '200'

restfrq = '89.18852470GHz'

tclean (HCO+ absorption image & spectrum)



Change Parameters : weighting, pbcor, pixel size


Weighting	pbcor	cell size	peak intensity [Jy / beam]					
			J0942 (논문 : 0.203)	J0942 J1136 문 : 0.203) (논문 : 0.466)				
natural	X	0.8"	0.186	0.431	0.299			
uniform	Х	0.8"	0.185	0.431	0.277			
natural	0	0.8"	0.186	0.431	0.299			
natural	Х	2.4"	0.187	0.433	0.324			

Convert Intensity to Optical Depth

The equation of radiative transfer

Optical Depth (τ)

Convert Optical Depth to H₂ Column Density

 $\int \tau \, \mathrm{d}v = W_{\mathrm{HCO}^+}$

 $\sigma_W = \sigma_\tau \times (number of channel)^{1/2} \times \Delta v$

 $N(HCO^{+}) = 1.10 \times 10^{12} \text{ cm}^{-2} \int \tau \, dv$ $N(HCO^{+})/N(H_{2}) = 3 \times 10^{-9}$

Calculation

	J0942	J1136	J1723
$\frac{W_{\rm HCO^+}}{\rm (kms^{-1})}$	1.227	1.524	1.731
O W(HCO⁺)	0.044	0.184	0.049
$N(HCO^+)$ (10 ¹² cm ⁻²)	1.35	1.68	1.90
$\frac{2N(H_2)}{(10^{20} \text{ cm}^{-2})}$	8.99	11.18	12.70

Source	α(J2000) hh.mmssss	δ (J2000) dd.mmssss	<i>l</i> (°)	<i>b</i> (°)	$\frac{E_{B-V}^{a}}{(\text{mag})}$	$\frac{N(H I)^b}{(10^{20} cm^{-2})}$	S _{89.2} (Jy)	$\sigma_{l/c}{}^c$	$\frac{W_{\rm HCO^+}}{\rm (kms^{-1})}^d$	$\frac{W_{\rm HCO^+}}{\rm (kms^{-1})}^d$
J0942-7731	09.424275	-77.311158	293.321	-18.329	0.33	9.1	0.203	0.0400	1.142 (0.067) ^f	1.227(0.044)
J1058-8003	10.584331	-80.035416	298.010	-18.288	0.15	6.0	1.189	0.0067	0.201 (0.009)	< 0.032
J1136-6827	11.360210	-68.270609	296.070	-6.590	0.47	21.7	0.466	0.0195	1.241 (0.035)	1.524(0.184)
J1145-6954	11.455362	-69.540179	297.316	-7.747	0.38	16.8	0.537	0.0188	0.870 (0.031)	0.150 (0.007)
J1147-6753	11.473340	-67.534176	296.958	-5.767	0.30	23.0	1.552	0.0064	0.054 (0.010)	< 0.034
J1152-8344	11.525322	-83.440943	301.238	-21.058	0.28	9.8	0.113	0.0719	0.240 (0.070)	< 0.342
J1224-8313	12.245438	-83.131010	302.095	-20.391	0.26	8.7	0.300	0.0249	0.945 (0.044)	0.345 (0.040)
B1251-7138	12.545983	-71.381840	303.213	-8.769	0.28	17.0	0.574	0.0166	0.139 (0.027)	< 0.091
J1312-7724	13.123874	-77.241306	304.122	-14.582	0.46	11.0	0.207	0.0390	0.271 (0.036)	< 0.202
J1550-8258	15.505916	-82.580650	308.272	-22.047	0.11	6.3	0.352	0.0261	0.242 (0.040)	< 0.158
J1617-7717	16.174928	-77.171846	313.426	-18.854	0.09	6.2	2.464	0.0044	0.059 (0.007)	< 0.022
J1723-7713	17.235085	-77.135020	315.688	-21.800	0.26	7.7	0.309	0.0322	1.507 (0.052)	1.731(0.049)
J1733-7935	17.334070	-79.355537	313.606	-23.268	0.14	7.3	0.597	0.0149	0.057 (0.020)	< 0.078

Table 1. Sightline and spectral line properties.

Notes. ^(a) Schlegel et al. (1998). ^(b) N(H I) = $\int T_B dv \times 1.823 \times 10^{18} \text{ cm}^{-2}$ from the Gass III H I profile (Kalberla & Haud 2015). ^(c) Line/continuum rms at 89.2 GHz at zero optical depth. ^(d) N(HCO⁺) = $1.10 \times 10^{12} \text{ cm}^{-2} \text{ W}_{\text{HCO}^+}$. ^(e) N(HCN) = $1.89 \times 10^{12} \text{ cm}^{-2} \text{ W}_{\text{HCN}}$. Upper limits are 3σ . ^(f) Quantities in parenthesis are the standard deviation.

N(DNM) (10 ²⁰ cm ⁻²)	Source	E_{B-V} (mag)	$\frac{N(H I) _{tot}^{a}}{(10^{20} cm^{-2})}$	$\frac{N(H I) _{cham}^{b}}{(10^{20} cm^{-2})}$	$\frac{N(DNM)^{c}}{(10^{20} \text{ cm}^{-2})}$	$\frac{2\mathrm{N}(\mathrm{H}_2)^d}{(10^{20}~\mathrm{cm}^{-2})}$	$N(H)/E_{B-V}^{e}$ (10 ²¹ cm ⁻² mag ⁻¹)	$\frac{N(H_2)/X_{CO}^0}{(K-km s^{-1})}$
≥2	J1152 ^g	0.28	9.8	5.05	5.15	1.76	4.1	0.5
	J1312	0.46	11.0	6.71	3.96	1.98	2.8	0.5
	J0942 ^g	0.33	9.1	6.17	3.82	8.20 8.9	9 5.2	2.0
	J1058	0.15	6.0	4.70	3.71	1.50	5.0	0.4
	J1224 ^{g,h}	0.26	8.7	5.63	3.35	7.20	6.1	1.8
	J1145 ^{g,h}	0.38	16.8	9.98	2.23	6.20	6.1	1.5
	J1723 ^{g,h,i}	0.26	7.7	5.00	1.95	11.1 12	.70 7.2	2.8
	J1136 ^{g,h}	0.47	21.7	9.15	1.72	9.1 11	.18 7.0	1.6
	$mean(\sigma)$	0.33 (0.11)	12.7 (6.3)	6.6 (2.0)	3.3 (1.3)	5.6 (3.6)	5.4 (1.4)	1.4 (0.9)
≲0.5	J1617	0.09	6.2	4.31	0.45	0.43	7.3	0.1
	J1550	0.11	6.3	4.16	0.27	1.90	7.4	0.5
	J1147	0.30	23.0	7.73	0.00	0.40	7.8	0.1
	B1251 ^g	0.28	17.0	6.60	0.00	0.84	6.0	0.2
	J1733 ^g	0.14	7.3	5.25	0.00	0.58	5.2	0.2
	$mean(\sigma)$	0.18 (0.10)	12.7 (8.6)	5.6 (1.5)	0.14 (0.21)	0.83 (0.62)	6.7 (1.1)	0.22 (0.16)

Table 2. Target by target sightline gas and dust properties in descending N(DNM) order.

Notes. ^(a) As in Table 1. ^(b) N(H I)_{cham} is N(H I) associated with the Chamaeleon complex. ^(c) N(DNM) from Planck Collaboration Int. XXVIII (2015). ^(d) N(H₂) = N(HCO⁺)/3 × 10⁻⁹. ^(e) N(H) = 2N(H₂) + N(H I)_{lot}. ^(f) The predicted integrated CO J = 1 - 0 brightness (W_{CO}) for $X_{CO} = 2 \times 10^{20}$ H₂ cm⁻² (K-km s⁻¹)⁻¹. ^(g) C₂H detected. ^(h) HCN detected. ⁽ⁱ⁾ $W_{CO} = 2.4$ K-km s⁻¹.

Possibilities

- 1. Optically thick atomic (HI) gas
- 2. CO-dark molecular (H₂) gas

Conclusion

Detecting large amounts of H_2 in the sightline where CO emission is not detected (or less detected) using the HCO⁺ absorption line

 \rightarrow DNM has a high probability of being a **CO-dark molecular gas** that could not be detected due to low sensitivity