알마(ALMA) 전파망원경

김종수 한국천문연구원

알마 전파망원경

전자기파

대기 불투명도 Atmospheric Opacity

Wavelength

가시광선, 적외선, 전파로 본 오리온 별자리 모습

칼 잔스키 Karl Jansky ^{1933년 우주전파 발견}

FIG. 1-Karl Guthe Jansky, about 1933.

그로테레버 Grote Reber ^{1937년 접시형} 전파망원경제작 및 연구

각 분해능

- 망원경의 각 분해능 ~ ^λ_ρ
 - λ는 파장, D는 망원경희 구경
 - 눈의 동경 D~8mm, λ=500 nm, 각 분해능 ~ 2'
 - 허블우주망원경 D=2.4 m, λ=500 nm, 각 분해능 ~ 0.05"
 - 그로테레버 망원경 D=9 m, λ=0.5 m, 각 분해능 ~ 3°

구경 500m 전파망원경 Five-hundred-meter Aperture Spherical radio Telescope (FAST)

분해능: 0.1m/300m =1'

• 중국 Guizhou 성에 2016년 9월 완공된 세계 최대 단일경 전파 망원경

대덕전파망원경

- 대전 한국천문연구원 캠퍼스 내에 1986년 완공
- 국내최초 전파망원경

< 캘리포니아 분자운의 필라멘트 구조 >

대덕전파망원경 관측영역 ¹³CO & C¹⁸O

허셜(Herschel) 과 플랑크(Planck) 우주 망원경 관측으로부터 얻은 캘리포니아 분자운의 250 (파랑), 350 (초록), 500 (빨강) µm 합성 그림. (Lada et al. 2017)

대덕전파망원경의 C^{is}O 관측자료로 본 3차원(적위, 적경, 속도) 필라멘트 구조

마틴 라일 Martin Ryle

- 원마일 망원경, one-mile telescope, 2 고정형 + 1 이동형, 18m
- 각 분해능:*λ/d,* d 두 안테나 간 떨어진 거리
- 1974 천문학에서는 처음으로 간섭계 관측 방법의 창시로
 (펄사를 발견한 안토니 헤위시와 공동으로) 노벨 물리학상을 받음

파다마디모

알마 망원경 위치

- 50개 12m 안테나
- 12개 7m + 4개 12m 안테나
- 가장 멀리 떨어진 두 안테나간 거리 : 16 km

여러 망원경의 각 분해능 비교

알마 사이트의 대기 투과도

알마 망원경의 발견

ALMA correlators

I I I I I

ALMA 망원경용 GPU 분광기 개발

💿 🗟 🗹 🛛 🧠 Applications Places System 🧕			
ARY-A05 (on zcossrvc) _ 🗆 🗙	ARY-A06 (on zcossrvc) _ 🗆 🗙	ARY-A07 (on zcossrvc) _ 🗆 🗙	ARY-A08 (on zcossrvc) _ 🗆 x
File Options Help	Eile Options Help	Eile Options Help	Eile Options Help
SOURCE : T-Cep ARRAY : A05 TSYS : 101 (K) Integ time : 20(sec) Display: Integration mode Binning: None	SOURCE : T-Cep ARRAY : A06 TSYS : 91 (K) Integ time : 20(sec) Display: Integration mode Binning: None	SOURCE : T-Cep ARRAY : A07 TSYS : 98 (K) Integ time : 20(sec) Display: Integration mode Binning: None	SOURCE : T-Cep ARRAY : A08 TSYS : 89 (K) Integ time : 20(sec) Display: Integration mode Binning: None
10.000-SCAN : 00007 cnt:7 8.000- 6.000- 4.000- 2.000- 0.000- RMS: 0.073 K	10.000-SCAN: 00007 cnt:7 8.000- 6.000- 4.000- 2.000- 0.000- RMS: 0.064 K	7.000-SCAN: 00007 cnt:7 6.000- 5.000- 4.000- 3.000- 2.000- 1.000- 0.000- RMS: 0.069 K	7.000-SCAN : 00007 cnt:7 6.000- 5.000- 4.000- 3.000- 2.000- 1.000- 0.000- RMS: 0.061 K
-20.00 -10.00 0.00 10.00 20.00 Velocity(km/s)	-20.00 -10.00 0.00 10.00 20.00 Velocity(km/s)	0 -20.00 -10.00 0.00 10.00 20.00 Velocity(km/s)	-20.00 -10.00 0.00 10.00 20.00 Velocity(km/s)

Definitions of u and /

 $b = B/\lambda$ u = b cos θ l = sin α

Visibility and Sky Brightness

- V(u,v), the complex visibility function, is the 2D Fourier transform of T(l,m), the sky brightness distribution (for incoherent source, small field of view, far field, etc.) [for derivation from van Cittert-Zernike theorem, see TMS Ch. 14]
- m_{\sim} mathematically N Pole $V(u,v) = \int \int T(l,m)e^{-i2\pi(ul+vm)}dldm$ T(l,m) $T(l,m) = \int \int V(u,v)e^{i2\pi(ul+vm)}dudv$ u, v are E-W, N-S spatial frequencies [wavelengths] I,m are E-W, N-S angles in the tangent plane [radians] (recall $e^{ix} = \cos x + i \sin x$) w $V(u,v) \xrightarrow{\mathcal{F}} T(l,m)$

Example model sky brightness T(l,m)

Dirty Beam and Dirty Image

Deconvolution in Radio Astronomy

Two most common deconvolution algorithms

- clean (Högbom, J.A 1974, A&AS, 15, 417)
 - a priori assumption: T(I,m) can be represented by point sources
 - variants to improve computational efficiency, performance on extended structure
- maximum entropy (Gull, S.F. & Daniell, G.J 1978, Nature, 272, 686)
 - special case of forward modeling that minimizes an objective function that includes the data and a regularization term ("regularized maximum likelihood" methods)
 - a priori assumption for max entropy: T(l,m) is smooth and positive
 - vast literature about the deep meaning of entropy (Bayes theorem)

A very active research area! (see, e.g. EHT M87 imaging paper)

 $T^{D}(l,m)$

\$

DEC offset (arcsec; J2000)

0

-2

RA offset (arcsec; J2000)

residual map

 $T^{D}(l,m)$

-5

\$

 $T^{D}(l,m)$

\$

DEC offset (arcsec; J2000)

0

-2

5

RA offset (arcsec; J2000)

RA offset (arcsec; J2000)

RA offset (arcsec; J2000)

4×10

2×10⁻³

G

-2×10⁻³

×10

 $T^{D}(l,m)$

5

DEC offset (arcsec; J2000)

0

-2

5

threshold reached

Clean Example: Restored Image

ellipse = restoring beam fwhm

final image depends on

- imaging parameters: pixel size, visibility weighting scheme, gridding, ...)
- deconvolution: algorithm, iterations, stopping criterion, ...)

 $T^{D}(l,m)$

\$

DEC offset (arcsec; J2000)

0

-2

RA offset (arcsec; J2000)

residual map

 $T^{D}(l,m)$

-5

\$

 $T^{D}(l,m)$

\$

DEC offset (arcsec; J2000)

0

-2

5

RA offset (arcsec; J2000)

RA offset (arcsec; J2000)

RA offset (arcsec; J2000)

4×10

2×10⁻³

G

-2×10⁻³

×10

 $T^{D}(l,m)$

5

DEC offset (arcsec; J2000)

0

-2

5

threshold reached

Clean Example: Restored Image

ellipse = restoring beam fwhm

final image depends on

- imaging parameters: pixel size, visibility weighting scheme, gridding, ...)
- deconvolution: algorithm, iterations, stopping criterion, ...)