The 6th ALMA Summer School

Weblog (Calibration)

2022. 8. 23. Seokho Lee (KASI)

Calibrations

02 Preparations Before launching

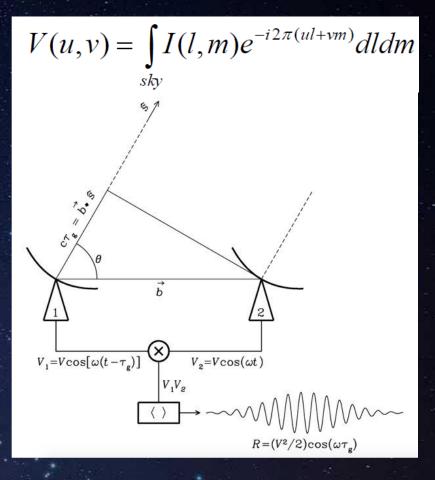
03

04

Before launching weblog First look at the weblog

Observed Informations + Images. Calibration

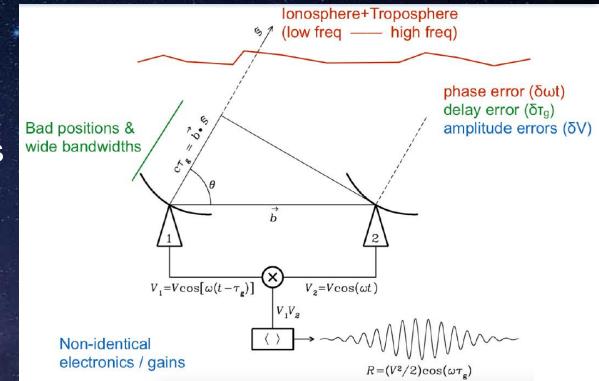
Q & A


Contents

Calibration

Why Calibration is needed?

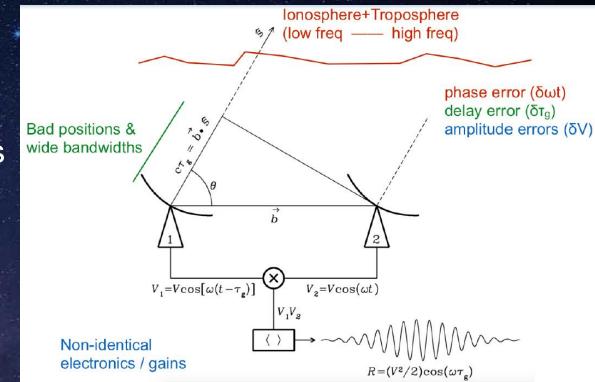
The true V_{ii} is corrupted by


- Atmospheric attenuation
- Radio "seeing"
- Variable pointing/delay offsets
- Electronic gain/delay/ phase changes
- Radiometer noise
- Correlator mal-functions
- Most Ineterference signals

Why Calibration is needed?

The true V_{ii} is corrupted by

- Atmospheric attenuation
- Radio "seeing"
- Variable pointing/delay offsets
- Electronic gain/delay/ phase changes
- Radiometer noise
- Correlator mal-functions
- Most Ineterference signals



Why Calibration is needed?

The true V_{ii} is corrupted by

- Atmospheric attenuation
- Radio "seeing"
- Variable pointing/delay offsets
- Electronic gain/delay/ phase changes
- Radiometer noise
- Correlator mal-functions
- Most Ineterference signals

 $V_{ij}^{obs} = J_{ij} V_{ij}^{True}$ (Baseline-based) $V_{ij}^{obs} = J_i J_j V_{ij}^{True}$ (Antena-based)

J_i has many componets

- Atmosphere-related effects (lonospheric, tropospheric)
- Antena-related effects (Primary beam pattern)
- Polarization-related effects (Parallactic angle, Linear polarization position angle, Polarization Leakage)
- Electronic Gain, G : most time dependent amplitude and phase effects
 - Bandpass Response, B : frequency-dependent function

 \bullet

Ampletude : How bright? Phase : Where?

J_i has many componets

- Atmosphere-related effects (lonospheric, tropospheric)
- Antena-related effects
 (Primary beam pattern)
- Polarization-related effects (Parallactic angle, Linear polarization position angle, Polarization Leakage)
- Electronic Gain, G : most time dependent amplitude and phase effects
- Bandpass Response, B : frequency-dependent function

Solving for J_i

Observe a celestial calibration source for which we have a model,

 $V_{ij}^{obs} - J_i J_j^* V_{ij}^{mod} = 0$

define chi-squared:

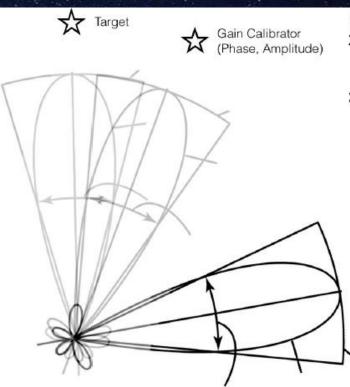
$$\chi^{2} = \sum_{\substack{i,j \\ i \neq j}} \left| V_{ij}^{obs} - J_{i} J_{j}^{*} V_{ij}^{mod} \right|^{2} w_{ij} \qquad \left(w_{ij} = \frac{1}{\sigma_{ij}^{2}} \right)$$

and minimize chi-squared w.r.t. each $\int_{i}^{*} \left(\frac{\partial \chi^{2}}{\partial J_{i}^{*}} = 0 \right)$

Then apply **J** to each visibility:

$$V_{ij}^{obs} = J_i J_j^* V_{ij}^{true} \quad \rightarrow \quad V_{ij}^{cor} = J_i^{-1} J_j^{*-1} V_{ij}^{obs}$$

The simplest model : Point source (QSOs)

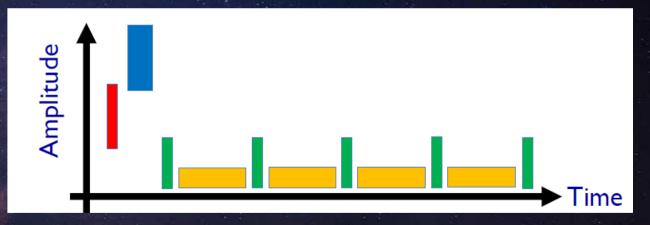

J_i has many componets

- Atmosphere-related effects (lonospheric, tropospheric)
- Antena-related effects
 (Primary beam pattern)
- Polarization-related effects

 (Parallactic angle, Linear polarization position angle, Polarization Leakage)

 Electronic Gain, G :
 - Electronic Gain, G : most time dependent amplitude and phase effects
 - Bandpass Response, B : frequency-dependent function

•



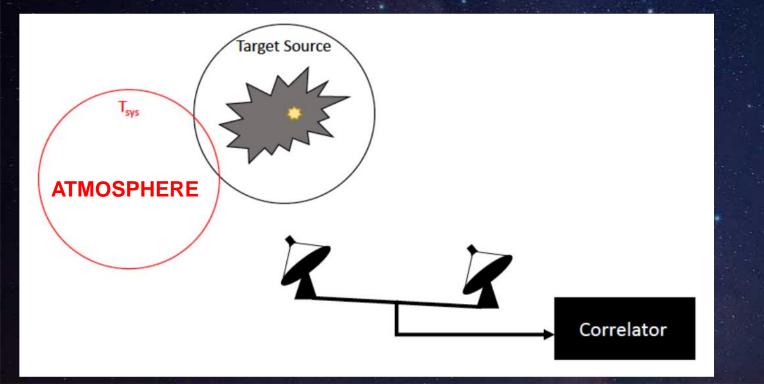
- 1. Observe source
- Observe calibrator to measure gains (amplitude and phase) as a function of time.
- 3. Observe **bright calibrator** of known flux-density and spectrum to measure absolute flux calibration, band-pass and residual delays

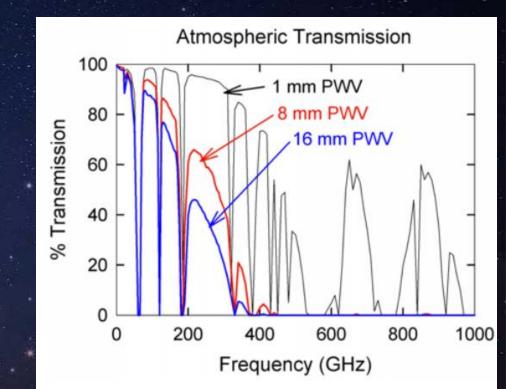
Observing Calibrator Sources

- Flux Density: 'standard candle' with known structure and spectral energy distribution. Typically observe once per observation.
- Bandpass: very bright, (line) featureless, and preferably unresolved. Typically observe once per observation.
- Gain: bright, preferably unresolved, accurate position near the target source. Observed before and after the target source more frequently than the coherence time.
- Polarization (pol angle and pol leakage)

Measurement Set (MS)

- CASA stores uv data in directories called 'Measurement Sets (MS)'.
- These data sets store two copies of the data ('columns')
- Additionally a 'model' may be stored separately.

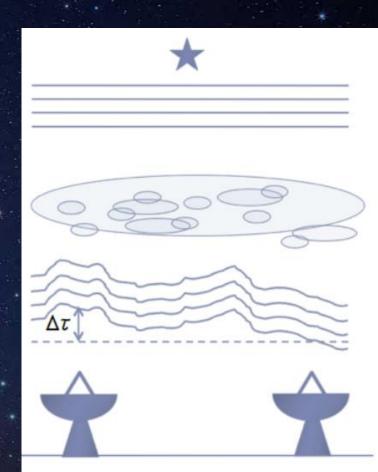

'Data' : contains the raw MS or unprocessed MS
'Corrected': created by applying one or more calibration terms to the 'Data' MS
'model' : used to calculating the calibration (tables). point source (phase = 0, amp = const).


Calibration Tasks

- Apply online calibrations for water vapor and Tsys
- Define the model
 - setjy: set model visibilities using known model for a calibrator (absolute fluxes along the frequency, point source)
 - fluxscale: apply absolute flux scaling to calibration talbe from known souce
- Derived Calibration Tables ('data'/'model')
 - gaincal: calculate temporal gain calibration table (amp/phase vs time)
 - Bandpass: calculate bandpass calibration table (amp/phase vs frequency)
- Manipulate our MS.
 - Flagging : flag (remove) bad data
 - Applycal : apply calibration table(s) from previous step (save in 'corrected')
 - Split: split off calibrated data from your MS ('corrected' → 'data' in new MS file)

T_{sys}: System temperature

• A first-order correction for the atmosphere opacity as a function of time and frequency $T_{sys} = T_{atm} (e^{\tau} - 1) + T_{rx} e^{\tau}$



WVR: Water Vapor Radiometry

- Measure the rapid (1 sec) fluctuation of the 182.5 GHz H₂O line using the radiometer in each 12 m antenna
 The measure is converted into column density and
- The measure is converted into column density and phase correction

Calibration Tasks

- Apply online calibrations for water vapor and Tsys
- Define the model
 - setjy: set model visibilities using known model for a calibrator (absolute fluxes along the frequency, point source)
 - fluxscale: apply absolute flux scaling to calibration talbe from known souce
- Derived Calibration Tables ('data'/'model')
 - gaincal: calculate temporal gain calibration table (amp/phase vs time)
 - Bandpass: calculate bandpass calibration table (amp/phase vs frequency)
- Manipulate our MS.
 - Flagging : flag (remove) bad data
 - Applycal : apply calibration table(s) from previous step (save in 'corrected')
 - Split: split off calibrated data from your MS ('corrected' → 'data' in new MS file)

Calibration Flow II

- Apply online calibrations for water vapor and Tsys
- Bandpass calibration
 - remove the frequency depedency
 - Bandpass calibrator

Phase correction (in short time) using a few channel (ignoring frequency-dependency) ==> bandpass

- Gain calibration
 - remove time dependent amplitude and phase
 - Gain (Phase) calibrator

Phase correction (in short time) \rightarrow Amp cal.

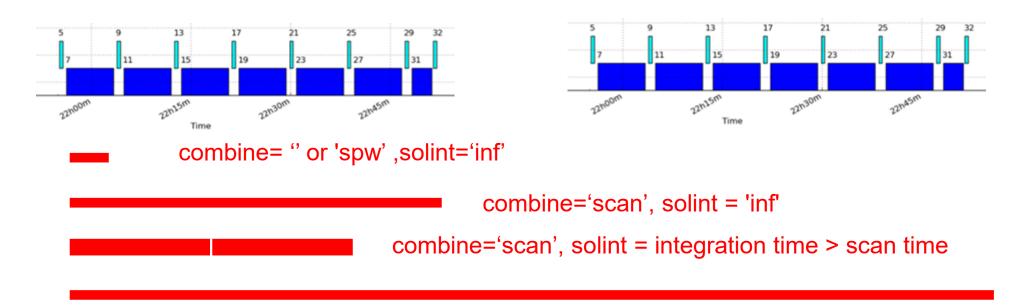
- Absolute flux calibration (Flux calibrator → Gain calibrator)
- Apply all calibration to target

Practical

- CASA tasks :
 - gaincal : caltable = 'data' / 'model'
 - applycal : 'corrected' = 'data' x caltable'

SNR ∝ sqrt (Bandwidth * integration time)

As possible as shorter time scale (for phase) and higher SNR

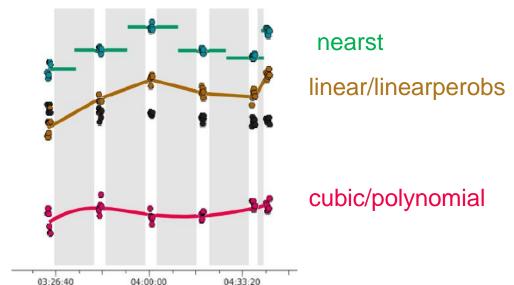

			Frequency	(TOPO)			
	Name	Туре	Start	Centre	End	Bandwidth (TOPO)	
	X176064364#ALMA_RB_07#BB_4#SW- 01	TDM	302.471 GHz	303.471 GHz	304.471 GHz	2.000 GHz	
	X176064364#ALMA_RB_07#BB_1#SW- 01	FDM	316.665 GHz	316.782 GHz	316.899 GHz	234.375 MHz	
2 8	X176064364#ALMA_RB_07#BB_2#SW- 01	FDM	315.831 GHz	316.066 GHz	316.300 GHz	468.750 MHz	
	X176064364#ALMA_RB_07#BB_2#SW- 02	FDM	315.767 GHz	316.001 GHz	316.235 GHz	468.750 MHz	
Sal and	X176064364#ALMA_RB_07#BB_3#SW- 01	FDM	301.505 GHz	301.739 GHz	301.973 GHz	468.750 MHz	

gaincal(vis, caltable=", field=", spw=", intent=", selectdata=True, timerange=", uvrange=", antenna=", scan=", observation=", msselect=", solint='inf', combine=", preavg=- 1.0, refant=", refantmode='flex', minblperant=4, minsnr=3.0, solnorm=False, normtype='mean', gaintype='G', smodel=["], calmode='ap', solmode=", rmsthresh=["], corrdepflags=False, append=False, splinetime=3600.0, npointaver=3, phasewrap=180.0, docallib=False, callib=", gaintable=["], gainfield=["], interp=["], spwmap=["], parang=False) [source]

- vis (string) Name of input visibility file ← 'data' + 'model'
- caltable (string=") Name of output gain calibration table
- solint (variant='inf') Solution interval 'int' (6.05s), '30s', 'inf'
- combine (string=") Data axes which to combine for solve (obs, scan, spw, and/or field)
- refant (string=") Reference antenna name(s)
- gaintype (string='G') Type of gain solution (G,T,GSPLINE,K,KCROSS) 'T' = sqrt(2) 'G' (XX, YY)
- calmode (string='ap') Type of solution" ('ap', 'p', 'a')
 'p' = phase, 'a' = 'amp', ap= both
- minblperant (int=4) Minimum baselines _per antenna required for solve
- minsnr (double=3.0) Reject solutions below this SNR
- solnorm (bool=False) Normalize (squared) solution amplitudes (G, T only)

gaincal(vis, caltable=", field=", spw=", intent=", selectdata=True, timerange=", uvrange=", antenna=", scan=", observation=", msselect=", solint='inf', combine=", preavg=- 1.0, refant=", refantmode='flex', minblperant=4, minsnr=3.0, solnorm=False, normtype='mean', gaintype='G', smodel=["], calmode='ap', solmode=", rmsthresh=["], corrdepflags=False, append=False, splinetime=3600.0, npointaver=3, phasewrap=180.0, docallib=False, callib=", gaintable=["], gainfield=["], interp=["], spwmap=["], parang=False) [source]

- solint (variant='inf') Solution interval 'int' (6.05s), '30s', 'inf'
- combine (string=") Data axes which to combine for solve (obs, scan, spw, and/or field)



gaincal(vis, caltable=", field=", spw=", intent=", selectdata=True, timerange=", uvrange=", antenna=", scan=", observation=", msselect=", solint='inf', combine=", preavg=- 1.0, refant=", refantmode='flex', minblperant=4, minsnr=3.0, solnorm=False, normtype='mean', gaintype='G', smodel=["], calmode='ap', solmode=", rmsthresh=["], corrdepflags=False, append=False, splinetime=3600.0, npointaver=3, phasewrap=180.0, docallib=False, callib=", gaintable=["], gainfield=["], interp=["], spwmap=["], parang=False) [source]

- vis (string) Name of input visibility file ← 'data' + 'model'
- caltable (string=") Name of output gain calibration table
- solint (variant='inf') Solution interval 'int' (6.05s), '30s', 'inf'
- combine (string=") Data axes which to combine for solve (obs, scan, spw, and/or field)
- refant (string=") Reference antenna name(s)
- gaintype (string='G') Type of gain solution (G,T,GSPLINE,K,KCROSS) 'T' = sqrt(2) 'G' (XX, YY)
- calmode (string='ap') Type of solution" ('ap', 'p', 'a')
 'p' = phase, 'a' = 'amp', ap= both
- minblperant (int=4) Minimum baselines _per antenna required for solve
- minsnr (double=3.0) Reject solutions below this SNR
- solnorm (bool=False) Normalize (squared) solution amplitudes (G, T only)

- docallib (bool=False) Use callib or traditional cal apply parameters
 - ▼ docallib = False
 - gaintable (stringArray=['']) Gain calibration table(s) to apply on the fly
 - gainfield (stringArray=['']) Select a subset of calibrators from gaintable(s)
 - interp (stringArray=['']) Interpolation parameters for each gaintable, as a list
 - spwmap (intArray=['']) Spectral window mappings to form for gaintable(s)

When combine='spw' in gaincal, spwmap=[0,0,0,0], or the narrow spw (2) is replaced with the broader (high SNR, 0) spw, spwmap=[0,1,0,3] If two gaintable are used, spwmap=[[0,0,0,0],[0,0,0,0]]

applycal(vis, field=", spw=", intent=", selectdata=True, timerange=", uvrange=", antenna=", scan=", observation=", msselect=", docallib=False, callib=", gaintable=["], gainfield=["], interp=["], spwmap=["], calwt=[True], parang=False, applymode=", flagbackup=True) [source]

- vis (string) Name of input visibility file
- applymode (string=") Calibration mode:

""="calflag","calflagstrict","trial","flagonly","flagonlystrict", or "calonly"

- docallib (bool=False) Use callib or traditional cal apply parameters
 - ▼ docallib = False
 - gaintable (stringArray=['']) Gain calibration table(s) to apply on the fly
 - gainfield (stringArray=['']) Select a subset of calibrators from gaintable(s)
 - interp (stringArray=['']) Interpolation parameters for each gaintable, as a list
 - spwmap (intArray=['']) Spectral windows combinations to form for gaintables(s)
 - calwt (boolArray=[True]) Calibrate data weights per gaintable.

Spectral Windows: (5 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch0(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) BBC Num Corrs#
0 128 TOPO 231608.777 15625.000 2000000.0 232600.9649 2 XX YY
1 128 TOPO 218981.394 -15625.000 2000000.0 217989.2060 4 XX YY

```
contvis = 'continuum_averaged.ms'
refant = 'DV10'
spwmap = [0,0]
```

```
applycal(vis=contvis,
spwmap=spwmap,
gaintable=['pcal3'],
interp='linear')
```

applycal(vis=contvis, spwmap=[spwmap,spwmap], gaintable=['pcal3','apcal'], interp='linear')

Methods for the Selfcalibration

Method 1

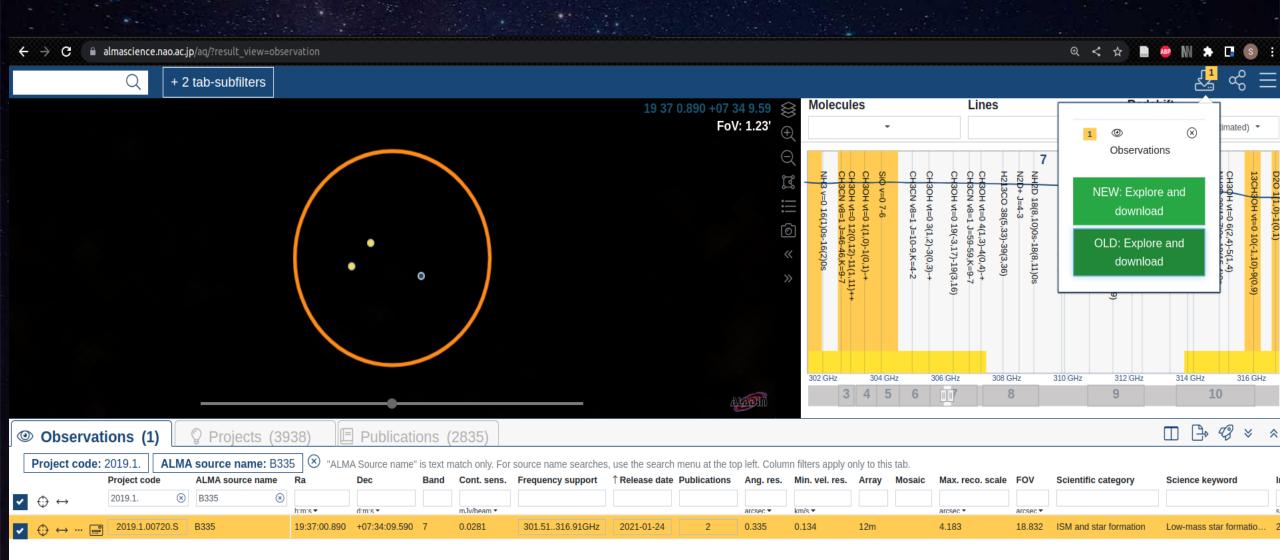
Loop:

tclean (datacolumn ='data') \rightarrow gaincal \rightarrow applycal (gain table X) \rightarrow split ('corrected' \rightarrow new MS) Apply selfcal to orginal data : applycal (gaintable= [pcal1, pcal2, pcal3..., apcal])

Method 2

Tclean (datacolumn = 'data') \rightarrow gaincal (pcal1) \rightarrow apply cal (gain table X) Loop (pcal 2 ...)

tclean (datacolumn = corrected') \rightarrow gain cal \rightarrow applycal apcal : tclean(datacolumn='corrected') \rightarrow gaincal (gaintable=pcal3) \rightarrow applycal (gaintable=pcal3) Apply selfcal to orginal data : applycal (gaintable= [pcal3, apcal])


Method 3

tclean (datacolumn = 'data') \rightarrow gaincal (pcal1) \rightarrow apply cal (gain table X) tclean(datacolumn='corrected') \rightarrow gaincal (gaintable=pcal1) \rightarrow applycal (gaintable=pcal1) tclean(datacolumn='corrected') \rightarrow gaincal (gaintable=[pcal1,pcal2]) \rightarrow applycal (gaintable=[pcal1,pcal2])

Apply selfcal to orginal data : applycal (gaintable= [pcal1, pcal2, pcal3..., apcal])

Preparations

Downloads

Downloads

ALMA Request Handler

Anonymous User: Request #1417016465438 🗸

Request Title: click to edit

Download Selected

✓ readme ✓ product ✓ auxiliary □ raw □ raw (semipass) □ external

Project / OUSet / Executionblock	Updated	File	Size	Accessible	Actions
🔻 📄 🚞 Request 1417016465438			8 GB		
Project 2019.1.00720.S					
🔻 📄 🚞 Science Goal OUS uid://A001/X1469/Xc2					
Group OUS uid://A001/X1469/Xc3					
▼ 🖲 🚞 Member OUS uid://A001/X1469/Xc4	2019-10- 24				
SB B335_a_07_TM1					
oreadme	member.uidA001_X1469_Xc4.README.txt		4 kB	⊻	
🕨 🗹 📄 product	2019.1.00720.S_uidA001_X1469_Xc4_001_of_001.tar		7 GB	⊻	
🕨 🗹 📄 auxiliary	2019.1.00720.S_uid		299 MB	⊻	
🕞 🛅 raw	2019.1.00720.S_uidA002_Xe1f219_X78a6.asdm.sdm.tar		28 GB	⊻	

<u>Login</u>

Downloads

In the download script file, please check the server

#!/bin/bash

This script runs on Linux and MaxOS and downloads all the selected files to the current working directory in up to 5 parallel download streams.
Should a download be aborted just run the entire script again, as partial downloads will be resumed.
We've finally got our server-side software sorted out and now positively encourage the use of parallel downloads
of single files from version 2020-0CT.

connect / read timeout for wget / curl
export TIMEOUT_SECS=300
how many times do we want to automatically resume an interrupted download?
export MAX_RETRIES=3
after a timeout, before we retry, wait a bit. Maybe the servers were overloaded, or there was some scheduled downtime.
with the default settings we have 15 minutes to bring the dataportal service back up.
export WAIT_SECS_BEFORE_RETRY=300
the files to be downloaded
LIST=("

https://almascience.nao.ac.jp/dataPortal/2015.1.00350.S_uid___A001_X2d6_X2c8_auxiliary.tar https://almascience.nao.ac.jp/dataPortal/2015.1.00350.S_uid___A002_Xac2df7_Xdf7.asdm.sdm.tar https://almascience.nao.ac.jp/dataPortal/member.uid___A001_X2d6_X2c8.README.txt.tar

Extract

-- project_id/

uid____XXXXX.weblog.tgz pipeline-XXXXX/html (directory)

science_goal.ouss_id/ group.ouss_id/ member.ouss_id		
README product/	(1) (2)	
calibration/	(3) (4)	
 script/ log/	(5) (6)	(only present in manually calibrated data)
raw/	(7)	(only present when part b is unpacked)

[guest20@neptune weblog_cal]\$ ls						
	index.html	stage12	stage19	stage4	t1-2.html	t2-3-5m.html	
casa-20191021-184150.log	PPR uid A001 X1469 Xc5.xml	stage13	stage2	stage5	t1-3.html	t2-3-6m.html	
casa-20220820-040920.log	resources	stage14	stage20	stage6	t1-4.html	t2-4m.html	
casa-20220820-041921.log	sessionsession 1	stage15	stage21	stage7	t2-1.html		
casa_commands.log	stage1 —	stage16	stage22	stage8	t2-3-1m.html		
casa_pipescript.py	stage10	stage17	stage23	stage9	t2-3-2m.html		
h_weblog.last	stage11	stage18	stage3	t1-1.html	t2-3-3m.html		

C 🔒 help.almascience.org/kb/articles/what-is-the-best-way-to-view-the-weblog

Q < ☆ ■ ● W ☆ G S

	Q How can we help you toda	ay?			
Help Center > Knowle	dgebase > General ALMA Queries > What is the	e best way to view the weblog	? TOO Sea	rch Sci Portal	
📷 What is	the best way to view the	e weblog?		Subscribe	~
sw Last updated: Jan 25, 20	022 by Sarah Wood			Labels error firefox qa2 w	veblog
Firefox. Since 2021 the ALMA p	sers the recommended internet browser to use for full funct ipeline (2021.2.0.128) using CASA 6.2.1-7, weblogs are also s browser security options, total functionality of the weblog	o viewable with Chrome and Safari		Author Sarah Wood	
- due to an inability to fi	s can include not opening or loading: linked files, the 'by topi nd the correct reference html page links. There may also be ide bar links. Note, for older Pipeline datasets using e.g. < C/	issue to produce all plots, and or th	ne radio	Date Created Sep 23, 2019	

Please take note: sometimes there can be errors when using a browser to open the weblog.

https://help.almascience.org/kb/articles/what-is-the-best-way-to-view-the-weblog

i) Use h_weblog() within a local CASA session:

From inside a CASA session, navigate to the root of the untarred weblog directory, e.g., pipeline-procedure_hifa_calimage, and run h_weblog. This command will serve the weblog via HTTP and launch a browser (in your default selected browser) connecting to the weblog. The weblog URL is also printed to the CASA logger, should you need to navigate to the weblog manually, or using a different brower. The URL to access is highlighted in the example CASA logger output below.

CASA <1>: h_weblog()

2020-07-30	12:57:20	INFO	h_weblog::::casa	#######################################
2020-07-30	12:57:20	INFO	h_weblog::::casa	##### Begin Task: h_weblog #####
2020-07-30	12:57:20	INFO	h_weblog::::casa	h_weblog(pipelinemode='automatic', relpath
2020-07-30	12:57:20	INFO	h_weblog::pipeline::casa	Found weblogs at:
2020-07-30	12:57:20	INFO	h_weblog::pipeline::casa+	main/pipeline=procedure_H
2020-07-30	12:57:20	INFO	h_weblog::pipeline::casa	Using existing HTTP server at 127.(
2020-07-30	12:57:20	INFO	h_weblog::pipeline::casa	Opening http://127.0.0.1:30000/mair
2020-07-30	12:57:20	INFO	h_weblog::::casa	Result h_weblog: None
2020-07-30	12:57:20	INFO	h_weblog::::casa	Task h_weblog complete. Start time: 2020-07
2020-07-30	12:57:20	INFO	h_weblog::::casa	##### End Task: h_weblog #####
2020-07-30	12:57:20	INFO	h_weblog::::casa	#######################################
4				

For security, the weblog HTTP server is only accessible from the same computer as the CASA session. To view the weblog from another computer you must forward the port using SSH. For example, to access the weblog hosted on a remote machine called remotepc, where the CASA log reports the weblog is available at port 30000, execute:

ssh -L 30000:localhost:30000 remotepc

> casa -pipeline CASA: h_weblog()

ii) Use a python3 call, external to a CASA session:

Outside of CASA one can also create the http server in which to view a local weblog. From the command line simply type:

python3 -m http.server 8080 --bind 127.0.0.1

The weblog can then be accessed in a web browser via the URL:

http://127.0.0.1:8080/"location_of_PL_weblog"/html/index.html

Note, this method requires python3, for which the version delivered with CASA can be used by setting it as an alias or by calling the full path. On MacOS this is found in "/Applications/CASA.app/Contents/MacOS/python3", or on Linux systems "'install_path'/casa-6.2.1-7-pipeline-2021.2.0.128/bin/python3"

cd ALMA2022 option 1) python3 –m http.server 8080 –bind 127.0.0.1 option 2) qaviewer In the browser (Activity -> Firefox) http://127.0.0.1:8080/weblog_img/index.html

Ports : Guest 11 \rightarrow 8081 Guest 12 \rightarrow 8082 ... Guest 18 \rightarrow 8088

4										
$\leftarrow \rightarrow $ G			O D 127.0.0.1:8080/inde	☆		${\top}$	≡			
🐣 Custo	omer Portal	<mark>4</mark> Red Hat	🐣 Red Hat Products Docu	🐣 Red Hat Enterprise Linu	4 Red Hat Developer Portal	🐣 Red Hat Container Cata	🐣 Red Hat Hy	/brid Cloud		
رل. :	🕈 Home	Ву Торіс	By Task					2019.1.0	0720.8	6

Observation Overview

Pipeline Summary

Project	uid://A001/X13ba/Xb34	Pipeline Version	42866M (Pipeline-CASA56-P1-B) (documentation)
Principal Investigator	ssj	CASA Version	5.6.1-8 (environment)
OUS Status Entity id	uid://A001/X1469/Xc4	Pipeline Start	2019-10-21 18:42:28 UTC
Observation Start	2019-10-08 21:41:02 UTC	Execution Duration	1 day, 7:59:59
Observation End	2019-10-08 22:52:03 UTC		

In .bashrc alias qaviewer='google-chrome --disable-web-security –user-data-dir=~/tmp' > qaviewer index.html

First look at the weblog

Check Results (Images)

Install the same CASA version Run the 'scriptForPI.py' in the script directoy using 'casa –pipeline'

لى مى	🕈 Home	Ву Торіс	By Task						2019.1.00720.S

Observation Overview

Pipeline Summary

Project	uid://A001/X13ba/Xb34	Pipeline Version	42866M (Pipeline-CASA56-P1-B) (documentation)	
Principal Investigator	ssj	CASA Version	5.6.1-8 (environment)	
OUS Status Entity id	uid://A001/X1469/Xc4	Pipeline Start	2019-10-21 18:42:28 UTC	
Observation Start	2019-10-08 21:41:02 UTC	Execution Duration	1 day, 7:59:59	
Observation End	2019-10-08 22:52:03 UTC			

Observation Summary

			Time (UTC)				Baseline Length				
Measurement Set	Receivers	Num Antennas	Start	End	On Source	Min	Max	RMS	Size		
Observing Unit Set Status: uid://A001/X1469/Xc4 Scheduling Block ID: uid://A001/X1469/Xba Scheduling Block Name: B335_a_07_TM1											
Session_											
uidA002_Xe1f219_X78a6.ms	ALMA Band 7	42	2019-10-08 21:41:01	2019-10-08 22:52:03	0:45:36	15.1 m	783.5 m	288.4 m	55.6 GB		

By Topic By Task 2019.1.00720.S A Home Click Figures (to see large ones) and blue words! کی Session: session_1 uid___A002_Xe1f219_X78a6.ms Overview of 'uid___A002_Xe1f219_X78a6.ms' **Observation Execution Time** ÍÍÍÍÍÍÍÍÍ RUNCING BHOLING BHERITIGH BHERITIGH CHEOL Start Time 2019-10-08 21:41:01 End Time 2019-10-08 22:52:03 **Total Time on Source** 1:05:53 Tintin Indon Intern Intern **Total Time on Science Target** 0:45:36 Intent vs Time Field vs Time Track scan intent vs time LISTOBS OUTPUT Track observed field vs time **Spatial Setup** Spectral Setup Science Targets 'B335' All Bands 'ALMA Band 7' and 'WVR' Calibrators 'J1924-2914' and 'J1938+0448' Science Bands 'ALMA Band 7' Antenna Setup Sky Setup Min Baseline 15.1 m Min Elevation 55.62 degrees Max Baseline 783.5 m Max Elevation 76.35 degrees

861

42

Number of Baselines

Number of Antennas

🕈 Home By Topic By Task

BACK

Session: session_1

Science Windows All Windows

Science Windows

				Frequency ((TOPO)				Channel	s (TOPO)				
Real ID	Virtual ID	Name	Туре	Start	Centre	End	Bandwidth (TOPO)	Transitions	Number	Frequency Width	Velocity Width	Correlator Axis	Band	Band Type
23	23	X176064364#ALMA_RB_07#BB_4#SW- 01	TDM	302.471 GHz	303.471 GHz	304.471 GHz	2.000 GHz	ContForCal(ID=0)	128	15.625 MHz	15.436 km/s	XX, YY	ALMA Band 7	TSB
25	25	X176064364#ALMA_RB_07#BB_1#SW- 01	FDM	316.665 GHz	316.782 GHz	316.899 GHz	234.375 MHz	D2O_1(1,0)-1(0,1)(ID=4104568)	1920	122.070 kHz	115.523 m/s	XX, YY	ALMA Band 7	TSB
27	27	X176064364#ALMA_RB_07#BB_2#SW- 01	FDM	315.831 GHz	316.066 GHz	316.300 GHz	468.750 MHz	13CH30H_v_t=0_10(-1,10)-9(0,9)(ID=575176), 13CH30H_v_t=1_4(1,4)-5(2,3)_++(ID=3764462)	960	488.281 kHz	463.141 m/s	XX, YY	ALMA Band 7	TSB
29	29	X176064364#ALMA_RB_07#BB_2#SW- 02	FDM	315.767 GHz	316.001 GHz	316.235 GHz	468.750 MHz	13CH30H_v_t=1_4(1,4)-5(2,3)_++(ID=3764462), 13CH30H_v_t=0_10(-1,10)-9(0,9)(ID=575176)	960	488.281 kHz	463.236 m/s	XX, YY	ALMA Band 7	TSB
31	31	X176064364#ALMA_RB_07#BB_3#SW- 01	FDM	301.505 GHz	301.739 GHz	301.973 GHz	468.750 MHz	13CH3OH_v_t=0_8_(2,6)-7_(-2,6)(ID=575128)	1920	244.141 kHz	242.566 m/s	XX, YY	ALMA Band 7	TSB

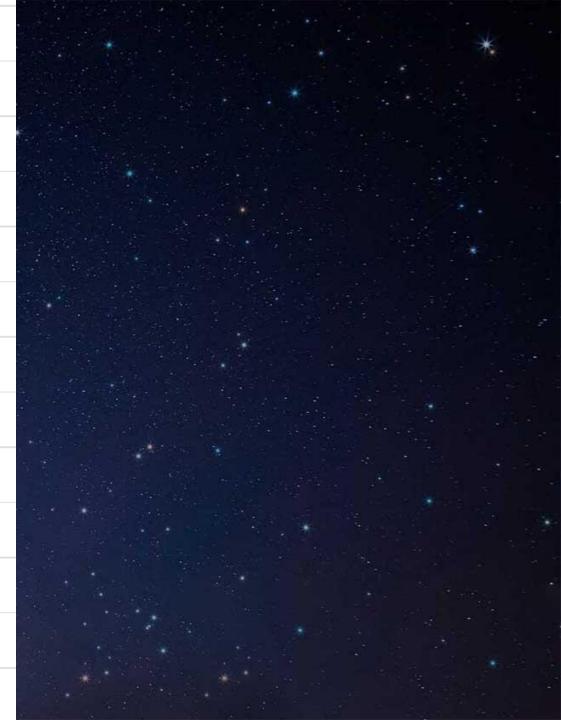
Spectral Windows with Science Intent in uid___A002_Xe1f219_X78a6.ms

÷	\rightarrow G	(i) File	home/	/shlee/ALMA/alma_summer_school/weblog_cal/t1-4.html	ର < :	☆ I	3 (
ALMA	A Home	Ву Торіс	By Task			201	9.1.00

Task Summaries

Task			QA Score		Duration
1. hifa_importdata: Register measurement sets with the pipeline				1.00	1:22:59
2. hifa_flagdata: ALMA deterministic flagging				1.00	6:27:26
3. hifa_fluxcalflag: Flag spectral features in solar system flux calibrators				1.00	0:00:14
4. hif_rawflagchans: Flag channels in raw data				1.00	0:36:44
5. hif_refant: Select reference antennas				1.00	0:01:28
6. h_tsyscal: Calculate Tsys calibration	Calibration			1.00	0:23:31
7. hifa_tsysflag: Flag Tsys calibration				0.96	0:33:28
8. hifa_antpos: Correct for antenna position offsets	_ _	Nonzero antenna position offsets		0.90	0:00:19
9. hifa_wvrgcalflag: Calculate and flag WVR calibration	T			0.97	0:44:12
10. hif_lowgainflag: Flag antennas with low gain				1.00	0:58:51
11. hif_setmodels: Set calibrator model visibilities	Imaging			1.00	0:42:46
• 12. hifa_bandpassflag: Phase-up bandpass calibration and flagging				0.91	4:12:00
13. hifa_spwphaseup: Spw phase offsets calibration		Spw mapping across sidebands		0.66	0:11:32
14. hifa_gfluxscaleflag: Phased-up flux scale calibration + flagging				1.00	1:19:15
15. hifa_gfluxscale: Transfer fluxscale from amplitude calibrator				1.00	1:10:40
16. hifa_timegaincal: Gain calibration				1.00	2:03:46
17. hif_applycal: Apply calibrations from context				0.91	5:43:33
18. hif_makeimlist. Set-up parameters for bandpass calibrator & flux calibrator & phase calibrator imaging				1.00	0:05:20
19. hif_makeimages: Make calibrator images				1.00	1:08:43
20. hif_makeimlist. Set-up parameters for check source imaging		No clean targets expected		N/A	0:00:20
21. hif_makeimages: Make check source images		Nothing to image		N/A	0:00:25
22. hifa_imageprecheck: ImagePreCheck				1.00	3:57:20
23. hif_checkproductsize: Check product size				1.00	0:15:17

Home By Topic


Task Summaries

Task		QA Score		Duration
1. hifa_restoredata: Restore Calibrated Data	No QA		N/A	1:20:42
2. hif_mstransform: Create science target MS			1.00	0:06:09
3. hifa_flagtargets: ALMA Target flagging			1.00	0:01:45
4. hifa_imageprecheck: ImagePreCheck			1.00	0:35:24
5. hif_checkproductsize: Check product size			1.00	0:02:37
6. hif_makeimlist: Set-up parameters for target per-spw continuum imaging			1.00	0:01:06
7. hif_findcont: Detect continuum frequency ranges			1.00	0:33:10
8. hif_uvcontfit: UV continuum fitting			1.00	0:32:09
9. hif_uvcontsub: UV continuum subtraction			1.00	0:07:20
10. hif_makeimages: Make target per-spw continuum images			1.00	0:18:58
11. hif_makeimlist: Set-up parameters for target aggregate continuum imaging			1.00	0:01:07
12. hif_makeimages: Make target aggregate continuum images			1.00	0:13:15
13. hif_makeimlist: Set-up parameters for target cube imaging			1.00	0:01:06
14. hif_makeimages: Make target cubes			1.00	2:52:11
15. hif_makeimlist: Set-up parameters for representative bandwidth target cube imaging			1.00	0:00:26
16. hif_makeimages: Make representative bandwidth target cube			1.00	0:12:00

4. hifa_imageprecheck: ImagePreCheck

- 5. hif_checkproductsize: Check product size
- 6. hif_makeimlist: Set-up parameters for target per-spw continuum imaging
- 7. hif_findcont: Detect continuum frequency ranges
- 8. hif_uvcontfit: UV continuum fitting
- 9. hif_uvcontsub: UV continuum subtraction
- 10. hif_makeimages: Make target per-spw continuum images
- 11. hif_makeimlist: Set-up parameters for target aggregate continuum imaging
- 12. hif_makeimages: Make target aggregate continuum images
- 13. hif_makeimlist: Set-up parameters for target cube imaging
- 14. hif_makeimages: Make target cubes
- 15. hif_makeimlist: Set-up parameters for representative bandwidth target cube imaging

16. hif_makeimages: Make representative bandwidth target cube

By Task 🕈 Home By Topic

1. hifa_restoredata

2. hif_mstransform

لکی ملسم

3. hifa_flagtargets

4. hifa_imageprecheck

5. hif_checkproductsize

6. hif_makeimlist (mfs)

7. hif_findcont

8. hif_uvcontfit

9. hif_uvcontsub

10. hif_makeimages (mfs)

11. hif_makeimlist (cont)

13. hif_makeimlist (cube)

14. hif_makeimages (cube)

15. hif_makeimlist (cube_repBW)

16. hif_makeimages (cube_repBW)

12. Tclean/MakeImages

Make target aggregate continuum images

Image Details

Field

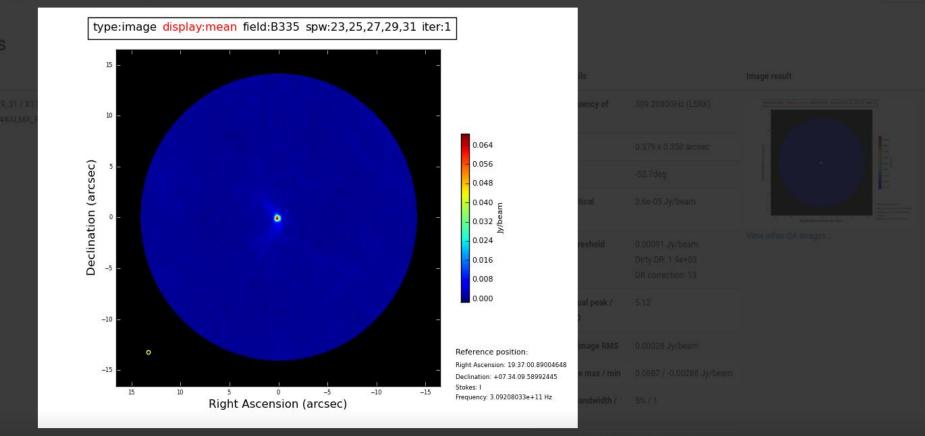
B335

(TARGET)

Spw	Pol	Image details		Image result
23, 25, 27, 29, 31 / X176064364#ALMA_RB_07#BB_4#SW-01, X176064364#ALMA_RB_07#BB_1#SW-01, X176064364#ALMA_RB_07#BB_2#SW-01, X176064364#ALMA_RB_07#BB_2#SW-01, X176064364#ALMA_RB_07#BB_3#SW-01	I	centre frequency of image	309.2080GHz (LSRK)	Type:maps double.mean holds315 gav21.45.77.20.31 for 1
		beam	0.379 x 0.358 arcsec	али 1940 - 1940 1940 -
		beam p.a.	-52.7deg	And the second s
		final theoretical sensitivity	3.6e-05 Jy/beam	Rept Accession (CESEC)
		cleaning threshold	0.00091 Jy/beam Dirty DR: 1.9e+03 DR correction: 13	View other QA images
		clean residual peak / scaled MAD	5.12	
		non-pbcor image RMS	0.00028 Jy/beam	
		pbcor image max / min	0.0687 / -0.00288 Jy/beam	
		fractional bandwidth / nterms	5% / 1	
		aggregate bandwidth	1.72 GHz (LSRK)	
		score	1.00	
		image file	uidA001_X1469_Xc4.s12_	0.B335_sci.spw23_25_27_29_31.cont.l.iter1.image

2019.1.00720.S

BACK


🕇 Home By Topic By Task

Tasks in execution order

- 1 hifagrestoredata
- 2 http://www.com
- 3 hifs flagtargets
- 4 hife imagenreche
- 5. htt checkproductsize
- 6. hif_makemiat (m
- 7. hif_findcont.
- B. hif_uvcontfi
- 9 hif_uvcontsub
- 10 hif_makeimages (mfs)
- 11 hif_makelmilist (cont)
- 12. hif_makeimages (com)
- 13 hitemäkelmillat (cube)
- 14. hit_makeimages (cube)
- 15 http://www.initiat.cube_repBW)
- 16 hif_makeimages (cube_repBW)

12. Tclean/Makelmages

Make target aggregate continuum images

aggregate bandwidth 1.72 GHz (LSRK)

Iteration: 1 Spw: 23,25,27,29,31 Field: B335 (TARGET)

- Beam sizes : 0.379 x 0.358 arcsec
- Sensitivity :

0

- Theoretical vs. non-pbcor RMS (36 uJy vs 280 uJy)
- Peak/RMS ~ 0.0687/0.00028 ~ 245
 (> 100 : dynamic range limited)
 - → Try Selfcalibration!!
- Aggregate bandwidth : 1.72 GHz
- Frequecny : 309.208 GHz

Pol	Image details		Image result
I	centre frequency of image	309.2080GHz (LSRK)	type:image display.mean field.8335 spx:23.25.27,29.31 iter.1
	beam	0.379 x 0.358 arcsec	0.004 0.006 0.006 0.006 0.000 0.000
	beam p.a.	-52.7deg	Declination date with the second date with
	final theoretical sensitivity	3.6e-05 Jy/beam	B B C B C
	cleaning threshold	0.00091 Jy/beam Dirty DR: 1.9e+03 DR correction: 13	View other QA images
	clean residual peak / scaled MAD	5.12	
	non-pbcor image RMS	0.00028 Jy/beam	
	pbcor image max / min	0.0687 / -0.00288 Jy/beam	
	fractional bandwidth / nterms	5% / 1	
	aggregate bandwidth	1.72 GHz (LSRK)	
	score	1.00	
	image file	uidA001_X1469_Xc4.s12_0).B335_sci.spw23_25_27_29_31.cont.l.iter1.image

Aggregate Bandwidth : Only line-free chanels

ALMA Home By Topic By Task

Tasks in execution order

1. hifa_restoredata

2. hif_mstransform
 3. hifa flagtargets

4. hifa_imageprecheck

5. hif_checkproductsize

6. hif_makeimlist (mfs)

7. hif_findcont

8. hif_uvcontfit

9. hif_uvcontsub

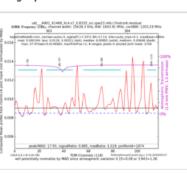
10. hif_makeimages (mfs)

11. hif_makeimlist (cont)

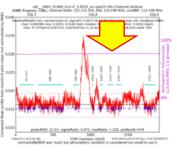
12. hif_makeimages (cont)

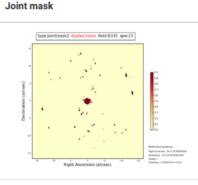
13. hif_makeimlist (cube)

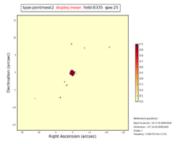
14. hif_makeimages (cube)


15. hif_makeimlist (cube_repBW)

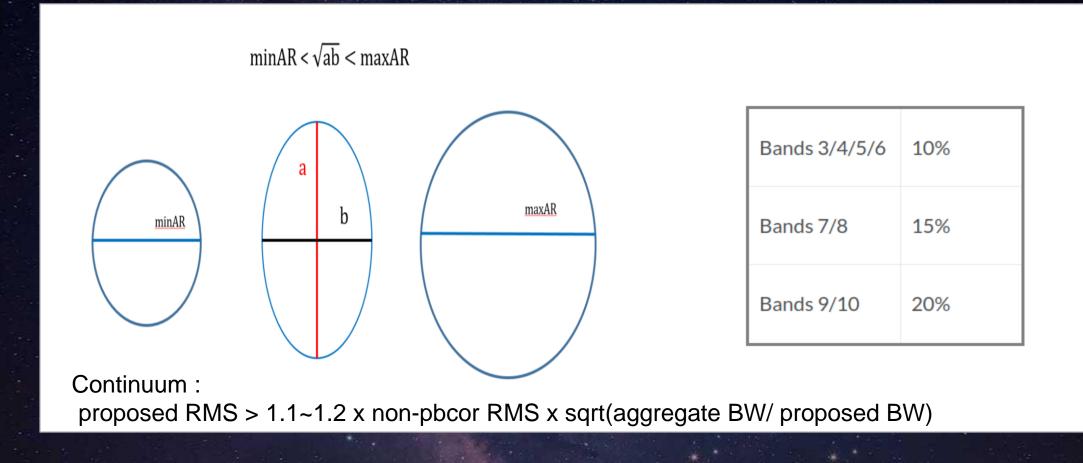
16. hif_makeimages (cube_repBW)


7. Find Continuum


Continuum Frequency Range


		, ,	5-		
Field	Spw	Start	End	Frame	Status
B335	23	302.60459 GHz	302.85461 GHz	LSRK	NEW
		302.96400 GHz	303.30778 GHz		
		303.43279 GHz	303.91720 GHz		
		304.24536 GHz	304.37037 GHz		
	25	316.68077 GHz	316.70312 GHz		
		316.71045 GHz	316.75051 GHz		
		316.76785 GHz	316.77677 GHz		
		316.79838 GHz	316.80119 GHz		
		316.81133 GHz	316.81621 GHz		
		316.82464 GHz	316.83295 GHz		
		316.83795 GHz	316.84699 GHz		
		316.88424 GHz	316.90122 GHz		


Average spectrum



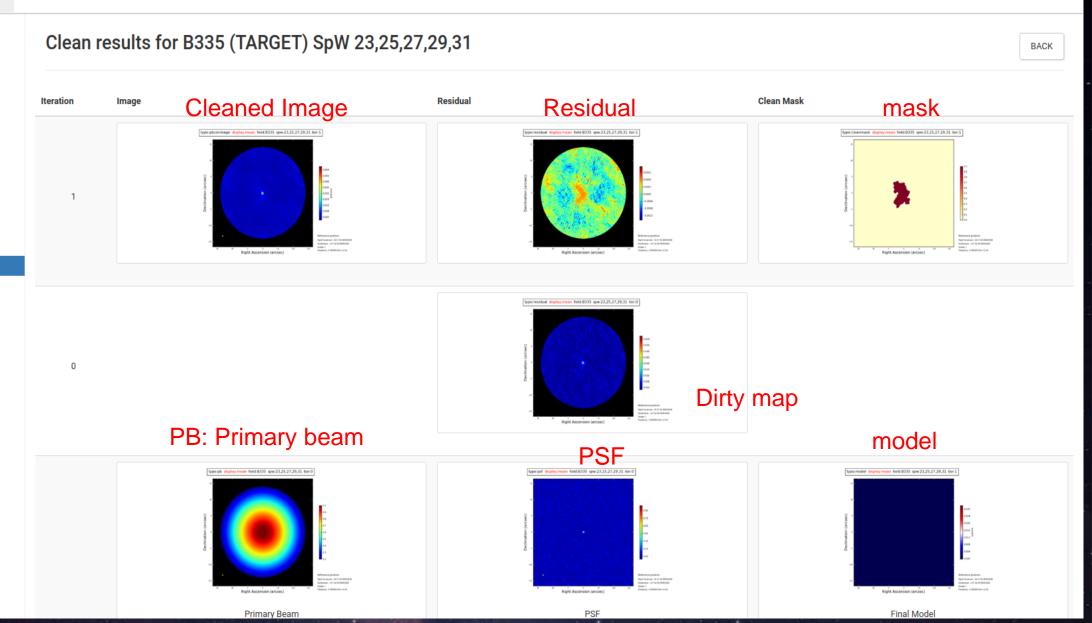
Aggregate Bandwidth : Only line-free chanels

QA2 Criteria : Beam size and sensitivity

• Beam sizes : 0.379 x 0.358 arcsec

P

- Sensitivity :
 - Theoretical vs. non-pbcor RMS (36 uJy vs 280 uJy)
 - Peak/RMS ~ 0.0687/0.00028 ~ 245 (> 100 : dynamic range limited)
 - → Try Selfcalibration!!
- Aggregate bandwidth : 1.72 GHz
- Frequecny : 309.208 GHz


Pol	Image details		Image result
	centre frequency of image	309.2080GHz (LSRK)	type:image display:mean field.8335 spw.23.25.27.29.31 iter.1
	beam	0.379 x 0.358 arcsec	0044 0056 0168 0268 0268
	beam p.a.	-52.7deg	Becchication (acceleration of the second sec
	final theoretical sensitivity	3.6e-05 Jy/beam	The second secon
	cleaning threshold	0.00091 Jy/beam Dirty DR: 1.9e+03 DR correction: 13	View other QA images
	clean residual peak / scaled MAD	5.12	
	non-pbcor image RMS	0.00028 Jy/beam	
	pbcor image max / min	0.0687 / -0.00288 Jy/beam	
	fractional bandwidth / nterms	5% / 1	
	aggregate bandwidth	1.72 GHz (LSRK)	
	score	1.00	
	image file	uidA001_X1469_Xc4.s12_(0.B335_sci.spw23_25_27_29_31.cont.l.iter1.image

لې ملسم A Home By Topic

Tasks in execution order

1. hifa_restoredata

- 2. hif_mstransform
- 3. hifa_flagtargets
- 4. hifa_imageprecheck
- 5. hif_checkproductsize
- 6. hif_makeimlist (mfs)
- 7. hif_findcont
- 8. hif_uvcontfit
- 9. hif_uvcontsub
- 10. hif_makeimages (mfs)
- 11. hif_makeimlist (cont)
- 13. hif_makeimlist (cube)
- 14. hif_makeimages (cube)
- 15. hif_makeimlist (cube_repBW)
- 16. hif_makeimages (cube_repBW)

Tasks in execution order

1. hifa_restoredata

2. hif_mstransform

لې ملسم

- 3. hifa_flagtargets
- 4. hifa_imageprecheck
- 5. hif_checkproductsize
- 6. hif_makeimlist (mfs)
- 7. hif_findcont
- 8. hif_uvcontfit
- 9. hif_uvcontsub
- 10. hif_makeimages (mfs)
- 11. hif_makeimlist (cont)
- 12. hif_makeimages (cont)
- 13. hif_makeimlist (cube)
- 15. hif_makeimlist (cube_repBW)
- 16. hif_makeimages (cube_repBW)

14. Tclean/MakeImages

Make target cubes

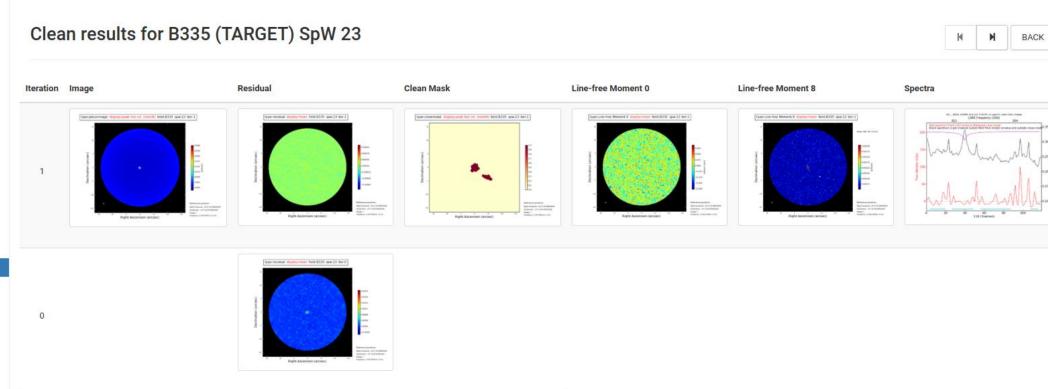
Image Details

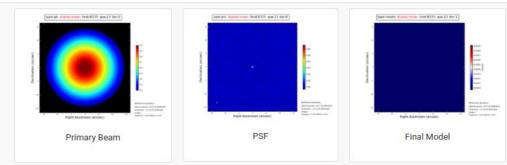
Field	Spw	Pol	Image details		Image result
B335 (TARGET)	23 / X176064364#ALMA_RB_07#BB_4#SW-01	I.	centre / rest frequency of cube	303.4797GHz / 303.4911GHz (LSRK)	type:mage displaypeak.ine.int. (mond) field(0.355 spw22).ker.1
			beam	0.388 x 0.361 arcsec	·
			beam p.a.	-52.4deg	
			final theoretical sensitivity	0.00022 Jy/beam	ere ta
			cleaning threshold	0.0011 Jy/beam Dirty DR: 1.8e+02 DR correction: 2.5	Right Ascension (arcsec)
			clean residual peak / scaled MAD	-6.53	
			non-pbcor image RMS / $\rm RMS_{min}$ / $\rm RMS_{max}$	0.00026 / 0.00021 / 0.00034 Jy/beam	
			pbcor image max / min	0.0403 / -0.0120 Jy/beam	
			channels	118 x 15.6263MHz (LSRK)	
			score	1.00	
			image file	uidA001_X1469_Xc4.s14_0.B335_sci.spw23.cube.l	.iter1.image
B335 (TARGET)	25 / X176064364#ALMA_RB_07#BB_1#SW-01	I.	centre / rest frequency of cube	316.7912GHz / 316.7998GHz (LSRK)	type:mage display.peak (ne int, (mon8) feld#335 spix25 ker1)
			beam	0.371 x 0.344 arcsec	
			beam p.a.	-49.3deg	

2019.1.00720.S

BACK

Pol Image details

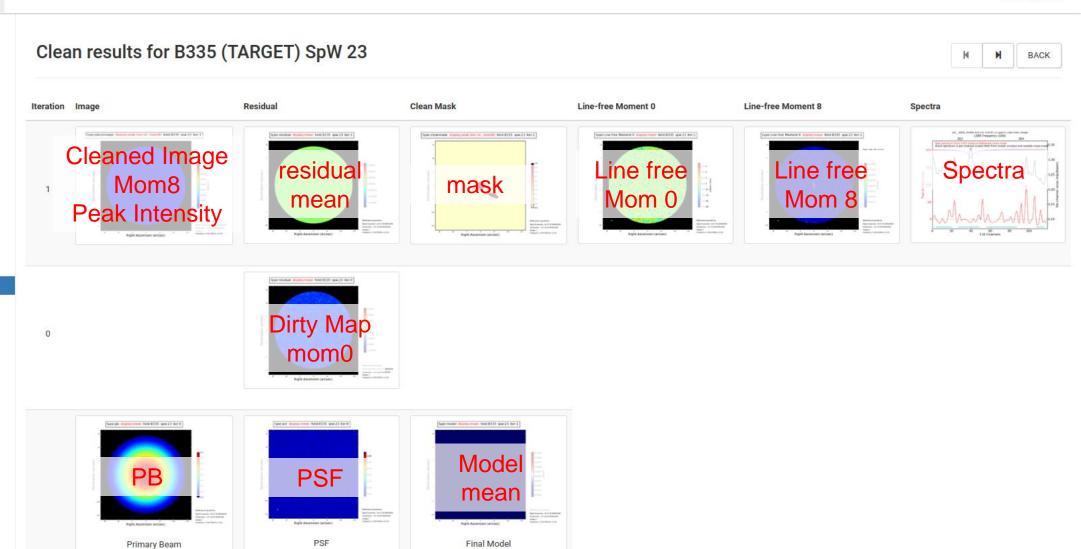

L


I	centre / rest frequency of cube	303.4797GHz / 303.4911GHz (LSRK)	type:image display.peak line int. (monst) field:8335 spw.23 iter:1
	beam	0.388 x 0.361 arcsec	a. 1040 1075
	beam p.a.	-52.4deg	Accession of the second
	final theoretical sensitivity	0.00022 Jy/beam	estimation of the second secon
	cleaning threshold	0.0011 Jy/beam Dirty DR: 1.8e+02 DR correction: 2.5	Right Ascension (arcsec)
	clean residual peak / scaled MAD	-6.53	
	non-pbcor image RMS / RMS _{min} / RMS _{max}	0.00026 / 0.00021 / 0.00034 Jy/beam	
	pbcor image max / min	0.0403 / -0.0120 Jy/beam	
	channels	118 x 15.6263MHz (LSRK)	
	score	1.00	
	image file	uidA001_X1469_Xc4.s14_0.B335_sci.spw23.cube.l.i	iter1.image

Home By Topic By Task

Tasks in execution order

- 1. hifa_restoredata
- 2. hif_mstransform
- 3. hifa_flagtargets
- 4. hifa_imageprecheck
- 5. hif_checkproductsize
- 6. hif_makeimlist (mfs)
- 7. hif_findcont
- 8. hif_uvcontfit
- 9. hif_uvcontsub
- 10. hif_makeimages (mfs)
- 11. hif_makeimlist (cont)
- 12. hif_makeimages (cont)
- 13. hif_makeimlist (cube)
- 14. hif_makeimages (cube
- 15. hif_makeimlist (cube_repBW)
- 16. hif_makeimages (cube_repBW)



2019.1.00720.S

A Home By Topic By Task

1. hifa_restoredata

- 2. hif_mstransform
- 3. hifa_flagtargets
- 4. hifa_imageprecheck
- 5. hif_checkproductsize
- 6. hif_makeimlist (mfs)
- 7. hif_findcont
- 8. hif_uvcontfit
- 9. hif_uvcontsub
- 10. hif_makeimages (mfs)
- 11. hif_makeimlist (cont)
- 12. hif_makeimages (cont)
- 13. hif_makeimlist (cube)
- 14. hif_makeimages (cube
- 15. hif_makeimlist (cube_repBW)
- 16. hif_makeimages (cube_repBW)

2019.1.00720.S

🛉 Home By Topic By Task

$\Box \pm \alpha$

Tasks in execution order 1. hifa_restoredata 2. hifa_mstransform 3. hifa_flagtargets 4. hifa_mageprecheck 5. hifa_checkproductsize 6. hifa_makembat (mfs)

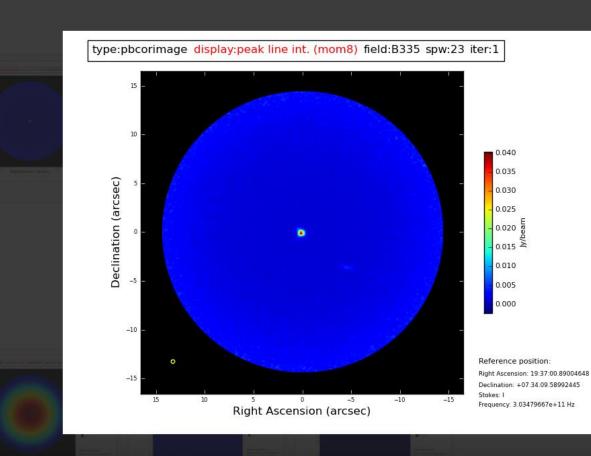
7. hif_findcont.

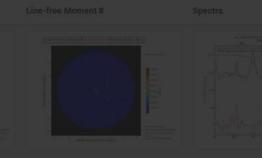
B. hif-uvcontfit

9 hif uvcontsub

10 hit_makeimages (mf

11 hif makemilist (cont)

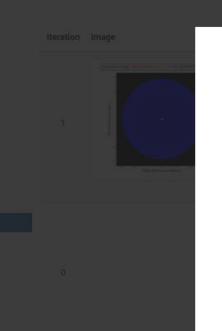

12. hif_makeimages (con

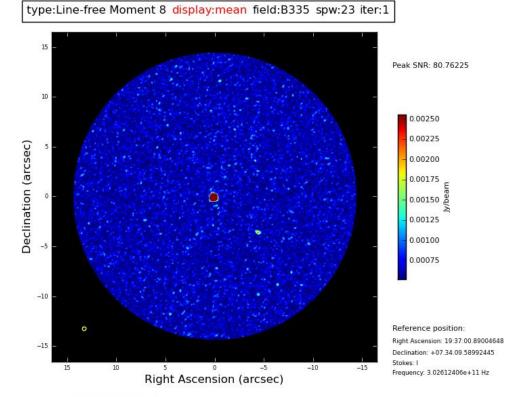

13 htt_makelmilist (cube

14. htt:makeimages (cube)

15 htt_makelmlist (cube_repBW)

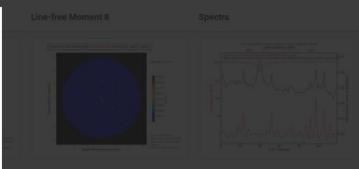
16 hif_makeimages (cube_repBW)

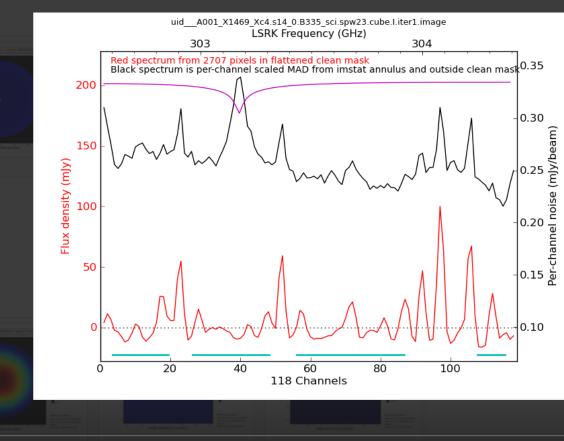

H N BACK

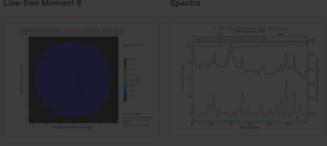

Image Iteration 1

🕈 Home By Topic By Task

Tasks in execution order


- 1 kila sostaradata
- 3 Nifematransform
- 3. hifa flagtarget
- A hife imenentech
- The second s
- W. HOLLINGSCHIDS
- * III/25mm/collis
- :8: DISERVCONTIN
- 9 hit_uvcontsut
- 10 bitimakeimages (mts
- 11 hif makelmilist (cont
- STATES THE STATES
- See the street area street
- the managementation are reade
- 14. nremaxemages (cube)
- 15 htt_makelmilist (cube_repBW)
- 16 bif_makeimages (cube_repBW)


H H BACK


□ ± Q

Integrated intensity (moment 8) of line-free channels after continuum subtraction Iteration 1

🕇 Home By Topic By Task

Spectrum from flattened clean mask and per channel MAD Iteration 1

K N BACK

Ву Торіс	By Task	
		Representative Target: B335
		Representative Frequency: 316.7910 GHz (SPW 25)
		Bandwidth for Sensitivity: 1.057 MHz (rounded to nearest integer #channels (9), repBW = 1.099 MHz)

2. hif_mstransform 3. hifa_flagtargets

لکی

5. hif_checkproductsize

Tasks in execution order 1. hifa_restoredata

A Home

6. hif_makeimlist (mfs)

7. hif_findcont

8. hif_uvcontfit

9. hif_uvcontsub

10. hif_makeimages (mfs)

11. hif_makeimlist (cont)

12. hif_makeimages (cont)

13. hif_makeimlist (cube)

14. hif_makeimages (cube)

15. hif_makeimlist (cube_repBW)

16. hif_makeimages (cube_repBW)

Maximum expected beam axial ratio (from OT): 1.5 Goal PI sensitivity: 2.50 mJy Single Continuum: False

Min / Max Acceptable Resolution: 0.300 arcsec / 0.500 arcsec

Estimated Synthesized Beam and Sensitivities for the Representative Target/Frequency

Estimates are given for four possible values of the tclean robust weighting parameter; robust = 0.0, +0.5 (default), +1.0, and +2.0. If the "Min / Max Acceptable Resolution" is available (>= Cycle 5 12-m Array data), the robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas according to the table row for repBW (Bandwidth for Sensitivity) is chosen. If none of these robust values predict a beam area that is in range, robust=+2.0 is chosen if the predicted beam area is too small, and robust=0.0 is chosen if the predicted beam area is too large. The chosen robust value is highlighted in green and used for all science target imaging. In addition to an estimate for the repBW, an estimate for the aggregate continuum bandwidth (aggBW) is also given assuming NO line contamination but accounting for spw frequency overlap. If the Bandwidth for Sensitivity (repBW) is > the bandwidth of the spw containing the representative frequency (repSPW), then the beam is predicted using all spws, otherwise the beam is predicted for the repSPW alone. A message appears on the "By Task" view if a non-default value of robust (i.e., not +0.5) is chosen. Additionally, if the predicted beam is not within the PI requested range using one of the four robust values, Warning messages appear on this page.

These estimates should always be considered as the BEST CASE SCENARIO. These estimates account for Tsys, the observed uv-coverage, and prior flagging. The estimates DO NOT account for (1) subsequent science target flagging; (2) loss of continuum bandwidth due to the hif_findcont process (i.e. removal of lines and other spectral features from the data used to image the continuum); (3) Issues that affect the image quality like (a) poor match of uv-coverage to image complexity; (b) dynamic range effects; (c) calibration deficiencies (poor phase transfer, residual baseline based effects, residual antenna position errors, etc.). It is also important to note that both the repBW and aggBW beam calculations are intrinsically multi-frequency synthesis continuum calculations, using the relevant spws as described above. The synthesized beam for a single channel in a cube will typically be larger and can be significantly larger depending on the details of uv-coverage and channel width.

robust	uvtaper	Synthesized Beam	Cell	Beam Ratio	Bandwidth	BW Mode	Effective Sensitivity
0.0	0	0.356 x 0.312 arcsec @ -49.8 deg	0.062 x 0.062 arcsec	1.14	1.099 MHz	repBW	0.0021 Jy/beam
0.0	0	0.346 x 0.312 arcsec @ -58.2 deg	0.062 x 0.062 arcsec	1.14	3237 MHz	aggBW	3.67e-05 Jy/beam
0.5	0	0.372 x 0.343 arcsec @ -51.3 deg	0.069 x 0.069 arcsec	1.08	1.099 MHz	repBW	0.00173 Jy/beam
0.5	0	0.374 x 0.353 arcsec @ -53.7 deg	0.071 x 0.071 arcsec	1.08	3237 MHz	aggBW	2.93e-05 Jy/beam
1.0	0	0.407 x 0.393 arcsec @ -8.71 deg	0.079 x 0.079 arcsec	1.04	1.099 MHz	repBW	0.00159 Jy/beam
1.0	0	0.419 x 0.405 arcsec @ -3.74 deg	0.081 x 0.081 arcsec	1.04	3237 MHz	aggBW	2.68e-05 Jy/beam
2.0	0	0.432 x 0.408 arcsec @ 4.19 deg	0.082 x 0.082 arcsec	1.06	1.099 MHz	repBW	0.00158 Jy/beam
2.0	0	0.447 x 0.425 arcsec @ 12.2 deg	0.085 x 0.085 arcsec	1.06	3237 MHz	aggBW	2.65e-05 Jy/beam

Tasks in execution order

1. hifa_restoredata

2. hif_mstransform

ALMA

3. hifa_flagtargets

4. hifa_imageprecheck

5. hif_checkproductsize

6. hif_makeimlist (mfs)

7. hif_findcont

8. hif_uvcontfit

9. hif_uvcontsub

10. hif_makeimages (mfs)

11. hif_makeimlist (cont)

12. hif_makeimages (cont)

13. hif_makeimlist (cu

14. hif_makeimages (cube)

15. hif_makeimlist (cube_repBW)

16. hif_makeimages (cube_repBW)

13. Make image list

Set-up parameters for target cube imaging

List of Clean Targets

field	intent	spw	phasecenter	cell	imsize	imagename	specmode	start	width	nbin	nchan	restfreq (LSRK)	robust	nterms	uvrange
B335	TARGET	23	ICRS 19:37:00.8900 +007.34.09.590	['0.069arcsec']	[480, 480]	uidA001_X1469_Xc4.sSTAGENUMBER.B335_sci.spw23.cube	cube			-1	-1	None	0.5		
B335	TARGET	25	ICRS 19:37:00.8900 +007.34.09.590	['0.069arcsec']	[480, 480]	uidA001_X1469_Xc4.sSTAGENUMBER.B335_sci.spw25.cube	cube			-1	-1	None	0.5		
B335	TARGET	27	ICRS 19:37:00.8900 +007.34.09.590	['0.069arcsec']	[<mark>480, 480</mark>]	uidA001_X1469_Xc4.sSTAGENUMBER.B335_sci.spw27.cube	cube			-1	-1	None	0.5		
B335	TARGET	29	ICRS 19:37:00.8900 +007.34.09.590	['0.069arcsec']	[480, 480]	uidA001_X1469_Xc4.sSTAGENUMBER.B335_sci.spw29.cube	cube			-1	-1	None	0.5		
B335	TARGET	31	ICRS 19:37:00.8900 +007.34.09.590	['0.069arcsec']	[480, 480]	uidA001_X1469_Xc4.sSTAGENUMBER.B335_sci.spw31.cube	cube			-1	-1	None	0.5		

Clean Targets Summary

Pipeline QA
Input Parameters
Tasks Execution Statistics
CASA logs for stage 13
View or download stage13/casapy.log (21.0 KB)

2019.1.00720.S

BACK

First look at the weblog

Check Observation and Calibartion

> cd ../web_cal/ >python3 -m http.server 8080 - -bind 127.0.0.1 In the browser http://127.0.0.1:8080/weblog_cal/index.html

2019.1.00720.S

Observation Overview

By Topic

By Task

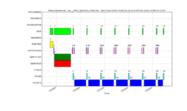
🕈 Home

Project	uid://A001/X13ba/Xb34	Pipeline Version	42866M (Pipeline-CASA56-P1-B) (documentation)
Principal Investigator	ssj	CASA Version	5.6.1-8 (environment)
OUS Status Entity id	uid://A001/X1469/Xc4	Pipeline Start	2019-10-21 18:42:28 UTC
Observation Start	2019-10-08 21:41:02 UTC	Execution Duration	1 day, 7:59:59
Observation End	2019-10-08 22:52:03 UTC		

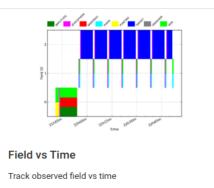
Pipeline Summary

Observation Summary

			Time (UTC)			Baseline Length			
Measurement Set	Receivers	Num Antennas	Start	End	On Source	Min	Мах	RMS	Size
Observing Unit Set Status: uid://A001/X1469/Xc4 Scheduling Block ID: uid://A001/X1469/Xba Scheduling Block Name: B335_a_07_TM1									
Session: session_									
uidA002_Xe1f219_X78a6.ms	ALMA Band 7	42	2019-10-08 21:41:01	2019-10-08 22:52:03	0:45:36	15.1 m	783.5 m	288.4 m	55.6 GB


Home By Topic By Task

Session: session_1


Overview of 'uid___A002_Xe1f219_X78a6.ms'

Observation Execution Time

Start Time	2019-10-08 21:41:01
End Time	2019-10-08 22:52:03
Total Time on Source	1:05:53
Total Time on Science Target	0:45:36
LISTOBS OUTPUT	

Intent vs Time Track scan intent vs time

Spatial Setup

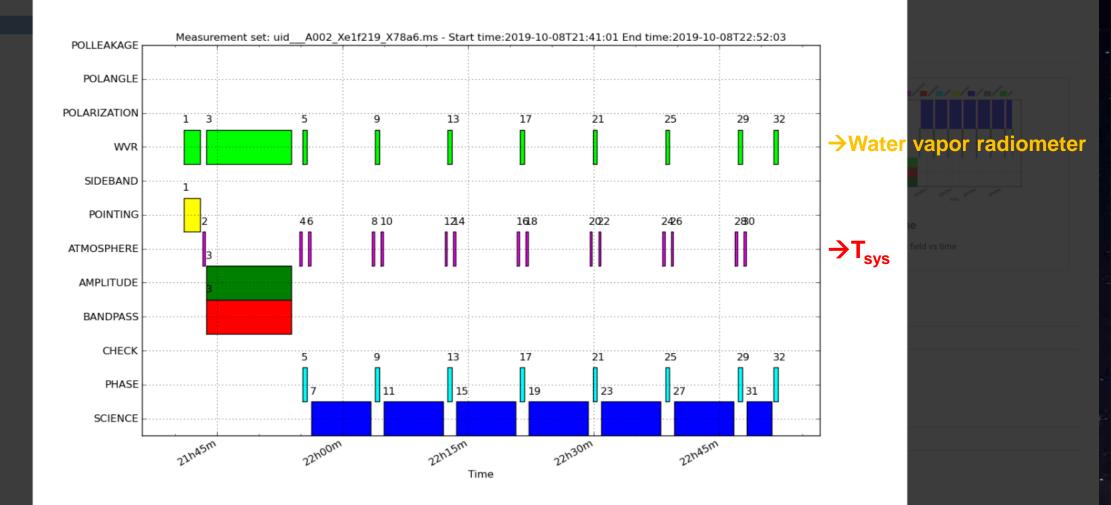
Science Targets	'B335'
Calibrators	'J1924-2914' and 'J1938+0448'

Antenna Setup

Min Baseline	15.1 m
Max Baseline	783.5 m
Number of Baselines	861
Number of Antennas	42

Spectral Setup

All Bands	'ALMA Band 7' and 'WVR'
Science Bands	'ALMA Band 7'


Sky Setup

Min Elevation	55.62 degrees
Max Elevation	76.35 degrees

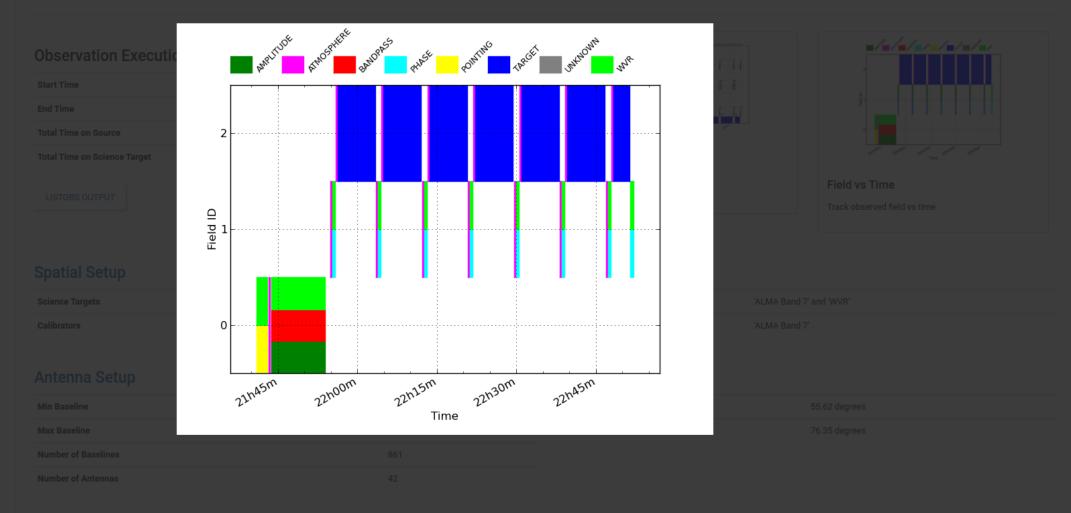
🕇 Home 🛛 By Topic 🔹 By Task

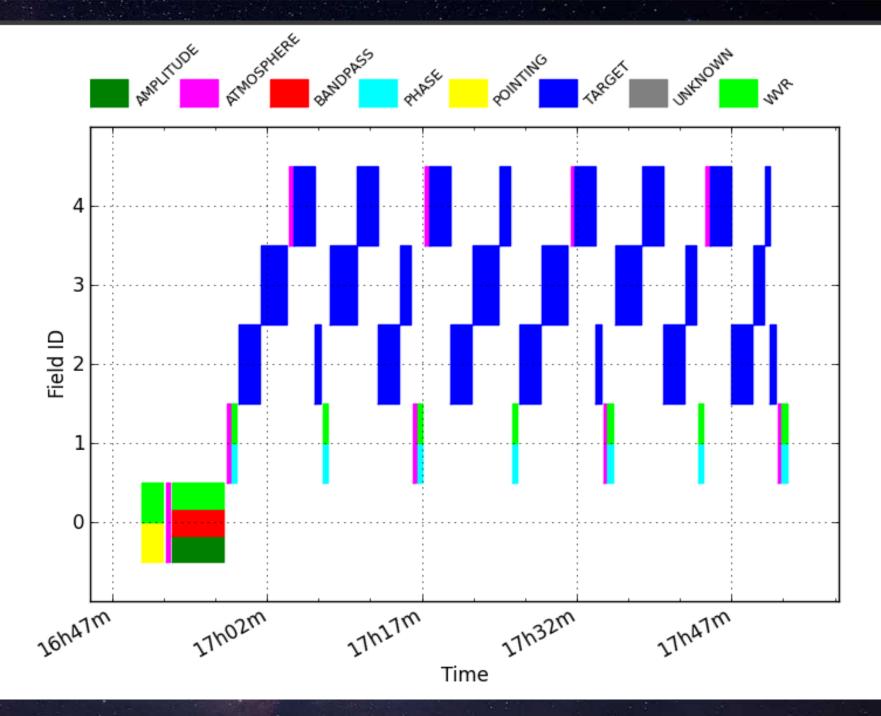
Session: session_1

uid A002 Xe1f219 X78a6 ms

🗆 🏓

×


🕇 Home 🛛 By Topic 🛛 By Tas


Session: session_1

uid A002 Xe1f219 X78a6.ms

Overview of 'uid___A002_Xe1f219_X78a6.ms'

EX) Mulitple points

لې ملسم By Topic 🕈 Home

Session: session_1

By Task

BACK

Spatial Setup Details

Sources

		Source Position			Proper Motion			
ID	Source Name	RA	Dec	Ref. Frame	х ү		# Pointings	Intent
0	J1924-2914	19:24:51.056	-029.14.30.121	ICRS			1	AMPLITUDE, ATMOSPHERE, BANDPASS, POINTING, WVR
1	J1938+0448	19:38:30.670	+004.48.11.614	ICRS			1	ATMOSPHERE, PHASE, WVR
2	B335	19:37:00.890	+007.34.09.590	ICRS			1	ATMOSPHERE, TARGET

Sources in uid___A002_Xe1f219_X78a6.ms

Fields

		Position				
Field ID	Field Name	Name RA Dec Ref. Frame Intent		Intent	Source Reference	
0	J1924-2914	19:24:51.056	-029.14.30.121	ICRS	AMPLITUDE, ATMOSPHERE, BANDPASS, POINTING, WVR	J1924-2914 (#0)
1	J1938+0448	19:38:30.670	+004.48.11.614	ICRS	ATMOSPHERE, PHASE, WVR	J1938+0448 (#1)
2	B335	19:37:00.890	+007.34.09.590	ICRS	ATMOSPHERE, TARGET	B335 (#2)

Fields in uid___A002_Xe1f219_X78a6.ms

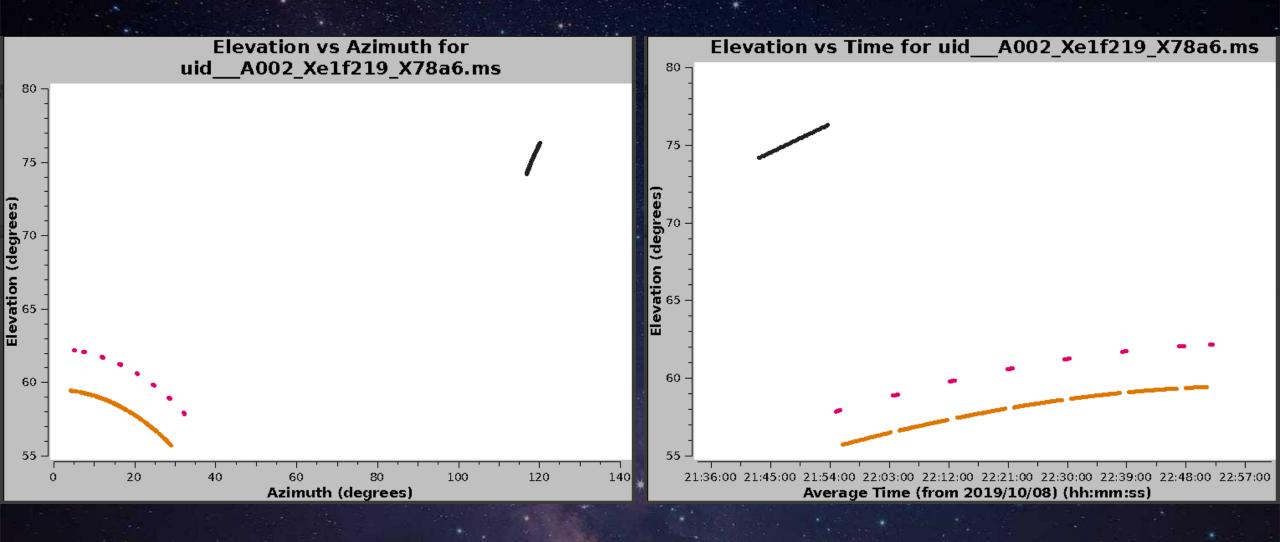
|--|

Session: session_1

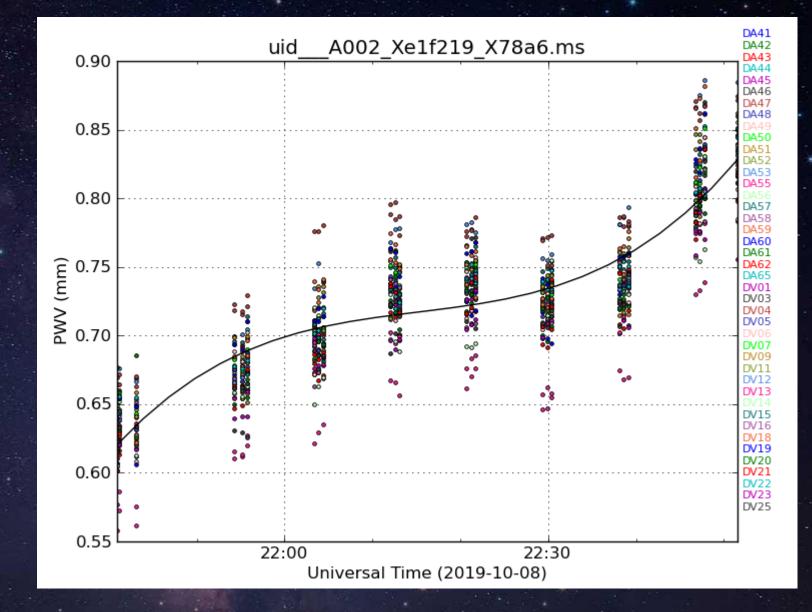
u___A002_Xe11219_X7880.1115

Spectral Setup Details

Science Windows All Windows


Science Windows

				Frequency	equency (TOPO)				Channels (TOPO)					
Real ID	Virtual ID	Name	Туре	Start	Centre	End	Bandwidth (TOPO)	Transitions	Number	Frequency Width	Velocity Width	Correlator Axis	Band	Band Type
23	23	X176064364#ALMA_RB_07#BB_4#SW- 01	TDM	302.471 GHz	303.471 GHz	304.471 GHz	2.000 GHz	ContForCal(ID=0)	128	15.625 MHz	15.436 km/s	XX, YY	ALMA Band 7	TSB
25	25	X176064364#ALMA_RB_07#BB_1#SW- 01	FDM	316.665 GHz	316.782 GHz	316.899 GHz	234.375 MHz	D20_1(1,0)-1(0,1)(ID=4104568)	1920	122.070 kHz	115.523 m/s	XX, YY	ALMA Band 7	TSB
27	27	X176064364#ALMA_RB_07#BB_2#SW- 01	FDM	315.831 GHz	316.066 GHz	316.300 GHz	468.750 MHz	13CH3OH_v_t=0_10(-1,10)-9(0,9)(ID=575176), 13CH3OH_v_t=1_4(1,4)-5(2,3)_++(ID=3764462)	960	488.281 kHz	463.141 m/s	XX, YY	ALMA Band 7	TSB
29	29	X176064364#ALMA_RB_07#BB_2#SW- 02	FDM	315.767 GHz	316.001 GHz	316.235 GHz	468.750 MHz	13CH3OH_v_t=1_4(1,4)-5(2,3)_++(ID=3764462), 13CH3OH_v_t=0_10(-1,10)-9(0,9)(ID=575176)	960	488.281 kHz	463.236 m/s	XX, YY	ALMA Band 7	TSB
31	31	X176064364#ALMA_RB_07#BB_3#SW- 01	FDM	301.505 GHz	301.739 GHz	301.973 GHz	468.750 MHz	13CH3OH_v_t=0_8_(2,6)-7_(-2,6)(ID=575128)	1920	244.141 kHz	242.566 m/s	XX, YY	ALMA Band 7	TSB


Spectral Windows with Science Intent in uid___A002_Xe1f219_X78a6.ms

2019.1.00720.S

BACK

 Antenna Position
 Antenna Position
 UV Coverage

 Plot antenna longitude
 Polar-logarithmic plot of antenna positions.
 UV coverage plot for TARGET field B335 (#2), spw 25.

Antenna Details

				Offset from Array Centre			
ID	Name	Pad	Diameter	Longitude	Latitude		
0	DA41	A058	12.0	12.7 m	-827.0 m		
1	DA42	A043	12.0	75.2 m	-747.2 m		
2	DA43	A035	12.0	32.0 m	-706.8 m		
3	DA44	A002	12.0	40.6 m	-690.2 m		
4	DA45	A069	12.0	-101.5 m	-770.1 m		
5	DA46	A008	12.0	67.6 m	-667.7 m		

DA41: 103 m, -168 DA42: 46 m, 117° DA43: 19 m, -8° DA44: 36 m, 10° DA45: 143 m, -108°

DA46: 67 m, 29°

DA48: 34 m, -18° DA49: 83 m, -97°

DA50: 49 m, 153

DA51: 297 m, -37 DA52: 307 m, 34

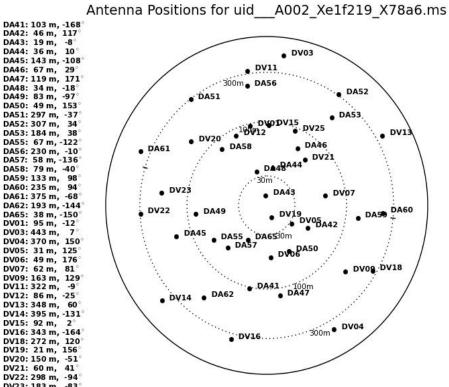
DA56: 230 m, -10°

DA57: 58 m, -136° DA58: 79 m, -40° DA59: 133 m, 98° DA60: 235 m, 94

DA61: 375 m, -68°

DV03: 443 m, 7°

DV05: 31 m, 125 DV06: 49 m, 176° DV07: 62 m, 81°

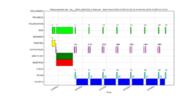

DV11: 322 m, -9°

DV12: 86 m, -25°

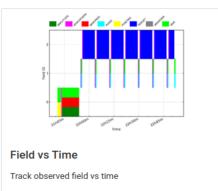
DV13: 348 m, 60

DV15: 92 m, 2°

DV19: 21 m, 156 DV20: 150 m, -51° DV21: 60 m, 41° DV22: 298 m, -94 DV23: 183 m, -83 DV25: 92 m, 22°


× Home By Topic By Task

Session: session_1


Overview of 'uid____A002_Xe1f219_X78a6.ms'

Observation Execution Time

Start Time	2019-10-08 21:41:01
End Time	2019-10-08 22:52:03
Total Time on Source	1:05:53
Tota on Science Target	0:45:36
LISTOBS OUTPUT	

Intent vs Time Track scan intent vs time

Spatial Setup

Science Targets	'B335'
Calibrators	'J1924-2914' and 'J1938+0448'

Antenna Setup

Min Baseline	15.1 m
Max Baseline	783.5 m
Number of Baselines	861
Number of Antennas	42

Spectral Setup

All Bands	'ALMA Band 7' and 'WVR'				
Science Bands	'ALMA Band 7'				

Sky Setup

Min Elevation	55.62 degrees
Max Elevation	76.35 degrees

Spectral	Windows: (33 unique spectral windows and	2 unique	polar	ization setu	ips)				
SpwID	Name	#Chans	Frame	Ch0(MHz)	ChanWid(kHz)	TotBW(kHz) CtrFreq(MHz)	BBC Num	Corrs	
Θ	X176064364#ALMA_RB_07#BB_1#SQLD	1	TOPO	302513.106	2000000.000	2000000.0 302513.1062	1	XX YY	
1	X176064364#ALMA_RB_07#BB_2#SQLD	1	TOPO	304408.606	2000000.000	2000000.0 304408.6062	2	XX YY	
2	X176064364#ALMA_RB_07#BB_3#SQLD	1	TOPO	314513.106	2000000.000	2000000.0 314513.1062	3	XX YY	
3	X176064364#ALMA_RB_07#BB_4#SQLD	1	TOPO	316471.106	2000000.000	2000000.0 316471.1062	4	XX YY	
4	WVR#NOMINAL	4	TOPO	184550.000	1500000.000	7500000.0 187550.0000	0	XX	
5	X176064364#ALMA_RB_07#BB_1#SW-01#FULL_RES	128	TOPO	303505.294	-15625.000	2000000.0 302513.1062	1	XX YY	
6	X176064364#ALMA_RB_07#BB_1#SW-01#CH_AVG	1	TOPO	302489.669	1781250.000	1781250.0 302489.6687	1	XX YY	Strange Contract
7	X176064364#ALMA_RB_07#BB_2#SW-01#FULL_RES	128	TOPO	305400.794	-15625.000	2000000.0 304408.6062	2	XX YY	*
8	X176064364#ALMA_RB_07#BB_2#SW-01#CH_AVG	1	TOPO	304385.169	1781250.000	1781250.0 304385.1687	2	XX YY	
9	X176064364#ALMA_RB_07#BB_3#SW-01#FULL_RES	128	TOPO	313520.919	15625.000	2000000.0 314513.1062	3	XX YY	
10	X176064364#ALMA_RB_07#BB_3#SW-01#CH_AVG	1	T0P0	314489.669	1781250.000	1781250.0 314489.6687	3	XX YY	
11	X176064364#ALMA_RB_07#BB_4#SW-01#FULL_RES	128	TOPO	315478.919	15625.000	2000000.0 316471.1062	4	XX YY	
12	X176064364#ALMA_RB_07#BB_4#SW-01#CH_AVG	1	TOPO	316447.669	1781250.000	1781250.0 316447.6687	4	XX YY	and the second
13	X176064364#ALMA_RB_07#BB_1#SQLD	1	T0P0	316263.106	2000000.000	2000000.0 316263.1062	1	XX YY	
14	X176064364#ALMA_RB_07#BB_2#SQLD	1	TOPO	316033.392	2000000.000	2000000.0 316033.3919	2	XX YY	
15	X176064364#ALMA_RB_07#BB_3#SQLD	1	TOPO	302263.106	2000000.000	2000000.0 302263.1062	3	XX YY	
16	X176064364#ALMA_RB_07#BB_4#SQLD	1	TOPO	303471.106	2000000.000	2000000.0 303471.1062	4	XX YY	
17	X176064364#ALMA_RB_07#BB_1#SW-01#FULL_RES	128	T0P0	315270.919	15625.000	2000000.0 316263.1062	1	XX YY	
18	X176064364#ALMA_RB_07#BB_1#SW-01#CH_AVG	1	TOPO	316255.294	1875000.000	1875000.0 316255.2937	1	XX YY	
19	X176064364#ALMA_RB_07#BB_2#SW-01#FULL_RES	128	T0P0	315041.204	15625.000	2000000.0 316033.3919	2	XX YY	
20	X176064364#ALMA_RB_07#BB_2#SW-01#CH_AVG	1	T0P0	316025.579	1875000.000	1875000.0 316025.5794	2	XX YY	
21	X176064364#ALMA_RB_07#BB_3#SW-01#FULL_RES	128	T0P0	303255.294	-15625.000	2000000.0 302263.1062	3	XX YY	
22	X176064364#ALMA_RB_07#BB_3#SW-01#CH_AVG	1	T0P0	302255.294	1875000.000	1875000.0 302255.2937	3	XX YY	
23	X176064364#ALMA_RB_07#BB_4#SW-01#FULL_RES	128	T0P0	304463.294	-15625.000	2000000.0 303471.1062	4	XX YY	
24	X176064364#ALMA_RB_07#BB_4#SW-01#CH_AVG	1	T0P0	303455.481	1796875.000	1796875.0 303455.4812	4	XX YY	
25	X176064364#ALMA_RB_07#BB_1#SW-01#FULL_RES	1920	T0P0	316665.114	122.070	234375.0 316782.2408	1	XX YY	
26	X176064364#ALMA_RB_07#BB_1#SW-01#CH_AVG	1	T0P0	316782.210	234375.000	234375.0 316782.2102	1	XX YY	
27	X176064364#ALMA_RB_07#BB_2#SW-01#FULL_RES	960	TOPO	315831.579	488.281	468750.0 316065.7100	2	XX YY	
28	X176064364#ALMA_RB_07#BB_2#SW-01#CH_AVG	1	T0P0	316065.588	468750.000	468750.0 316065.5879	2	XX YY	SCI
29	X176064364#ALMA_RB_07#BB_2#SW-02#FULL_RES	960	T0P0	315766.943	488.281	468750.0 316001.0738	2	XX YY	
30	X176064364#ALMA_RB_07#BB_2#SW-02#CH_AVG	1	T0P0	316000.952	468750.000	468750.0 316000.9517	2	XX YY	
31	X176064364#ALMA_RB_07#BB_3#SW-01#FULL_RES	1920	TOPO	301973.189	-244.141	468750.0 301738.9363	3	XX YY	
32	X176064364#ALMA_RB_07#BB_3#SW-01#CH_AVG	1	TOPO	301738.875	468750.000	468750.0 301738.8753	3	XX YY	

19:37:00.890000 +07.34.09.59000 ICRS

44852346

2

Science

Tsys

none B335

ObservationID = 0 ArrayID = 0						
Date Timerange (UTC)	Scan F	ldId FieldName	nRows	SpwIds	Average Interval(s)	ScanIntent
08-Oct-2019/21:41:01.8 - 21:42	56.7 1	0 J1924-2914	1603980	[0,1,2,	,3,4,5,6,7,8,9,10,11,12]	[0.016, 0.016, 0.016, 0.016, 1.15, 2.02, 1.01, 2.02, 1.01, 2.02, 1.01, 2.02, 1.01] [CALIBRA
TE_POINTING#ON_SOURCE, CALIBRATE_WVR#ON_SOURCE]						
21:43:15.5 - 21:43	32.2 2	0 J1924-2914	279174	[4,13,1	14,15,16,17,18,19,20,21,	2,23,24] [1.15, 0.016, 0.016, 0.016, 0.016, 0.576, 0
6, 0.576] [CALIBRATE_ATMOSPHERE#AMBIENT, CALIBRATE_ATMOSPHERE#HOT, CALIBRATE_ATMOSPHERE#OFF_SOURCE, CALIBRATE_WVR#AMBIENT, CALIBRATE_WVR#HOT, CALIBRATE_WVR#OFF_SOURCE]						
21:43:45.4 - 21:53	52.0 3	0 J1924-2914	9532908	[4,13,1	14,15,16,23,24,25,26,27,	[1.15, 0.016, 0.016, 0.016, 0.016, 0.016, 0.016, 0.05, 1.01, 0.05, 1.01, 0.05, 1.01, 0.05, 0.05, 0.05, 0.05, 0.05, 0.01, 0.05, 0.01, 0.05, 0.01, 0.05, 0.01, 0.05, 0.01, 0.05, 0.01, 0.05, 0.01, 0.01, 0.05, 0.01, 0.01, 0.05, 0.01, 0.01, 0.05, 0.01, 0.01, 0.05, 0.01, 0.01, 0.05, 0.01, 0.01, 0.05, 0.01, 0.0
1.01, 6.05, 1.01] [CALIBRATE_BANDPASS#ON_SOURCE,CALIBRATE_FLUX#ON_SOURCE,CALIBRATE_WVR#ON_SOURCE]						
21:54:51.3 - 21:55	97.9 4	1 J1938+0448	279174	[4,13,1	14,15,16,17,18,19,20,21,	2,23,24] [1.15, 0.016, 0.016, 0.016, 0.016, 0.576, 0
6, 0.576] [CALIBRATE_ATMOSPHERE#	MBIENT, CALIBRA	ATE_ATMOSPHERE#HOT, CALIBRAT	E_ATMOSPH	ERE#0FF_	_SOURCE, CALIBRATE_WVR#AM	IENT, CALIBRATE_WVR#HOT, CALIBRATE_WVR#OFF_SOURCE]
21:55:13.1 - 21:55	43.4 5	1 J1938+0448	476637	[4,13,1	14,15,16,23,24,25,26,27,	8,29,30,31,32] [1.15, 0.016, 0.016, 0.016, 0.016, 6.05, 1.01, 6.05, 1.01, 6.05, 1.01, 6.05,
1.01, 6.05, 1.01] [CALIBRATE_PHASE#ON_SOURCE, CALIBRATE_WVR#ON_SOURCE]						
21:55:53.5 - 21:56	9.8 6	2 B335	279132	[4,13,1	14,15,16,17,18,19,20,21,	2,23,24] [1.15, 0.016, 0.016, 0.016, 0.016, 0.576, 0
6, 0.576] [CALIBRATE_ATMOSPHERE#AMBIENT, CALIBRATE_ATMOSPHERE#HOT, CALIBRATE_ATMOSPHERE#OFF_SOURCE, CALIBRATE_WVR#AMBIENT, CALIBRATE_WVR#HOT, CALIBRATE_WVR#OFF_SOURCE]						
21:56:14.2 - 22:03	20.4 7	2 B335	6673086	[4,13,1	14, 15, 16, 23, 24, 25, 26, 27,	8,29,30,31,32] [1.15, 0.016, 0.016, 0.016, 0.016, 6.05, 1.01, 6.05, 1.01, 6.05, 1.01, 6.05,
1.01, 6.05, 1.01] [OBSERVE_TARGE	#ON_SOURCE]					
22:03:32.0 - 22:03	48.2 8	1 J1938+0448	279132	[4,13,1	14,15,16,17,18,19,20,21,	2,23,24] [1.15, 0.016, 0.016, 0.016, 0.016, 0.576, 0
6, 0.576] [CALIBRATE_ATMOSPHERE#	MBIENT, CALIBRA	ATE_ATMOSPHERE#HOT, CALIBRAT	E_ATMOSPH	ERE#0FF_	_SOURCE, CALIBRATE_WVR#AM	IENT, CALIBRATE_WVR#HOT, CALIBRATE_WVR#OFF_SOURCE]
22:03:52.7 - 22:04	23.7 9	1 J1938+0448	476637	[4,13,1	14, 15, 16, 23, 24, 25, 26, 27,	8,29,30,31,32] [1.15, 0.016, 0.016, 0.016, 0.016, 6.05, 1.01, 6.05, 1.01, 6.05, 1.01, 6.05,
1.01, 6.05, 1.01] [CALIBRATE_PHASE#ON_SOURCE, CALIBRATE_WVR#ON_SOURCE]						
22:04:34.2 - 22:04	50.5 10	2 B335	279132	[4,13,1	14,15,16,17,18,19,20,21,	2,23,24] [1.15, 0.016, 0.016, 0.016, 0.016, 0.576, 0
6, 0.576] [CALIBRATE_ATMOSPHERE#AMBIENT, CALIBRATE_ATMOSPHERE#HOT, CALIBRATE_ATMOSPHERE#OFF_SOURCE, CALIBRATE_WVR#AMBIENT, CALIBRATE_WVR#HOT, CALIBRATE_WVR#OFF_SOURCE]						
22:04:54.9 - 22:12		2 B335	6673086	[4,13,1	14,15,16,23,24,25,26,27,	8,29,30,31,32] [1.15, 0.016, 0.016, 0.016, 0.016, 6.05, 1.01, 6.05, 1.01, 6.05, 1.01, 6.05,
1.01, 6.05, 1.01] [OBSERVE_TARGE	#ON_SOURCE]					
22:12:12.7 - 22:12		1 J1938+0448		-		2,23,24] [1.15, 0.016, 0.016, 0.016, 0.016, 0.576, 0.576, 0.576, 0.576, 0.576, 0.576, 0.576, 0.57
6, 0.576] [CALIBRATE_ATMOSPHERE#AMBIENT, CALIBRATE_ATMOSPHERE#HOT, CALIBRATE_ATMOSPHERE#OFF_SOURCE, CALIBRATE_WVR#AMBIENT, CALIBRATE_WVR#HOT, CALIBRATE_WVR#OFF_SOURCE]						
22:12:33.4 - 22:13		1 J1938+0448	476679	[4,13,1	14,15,16,23,24,25,26,27,	8,29,30,31,32] [1.15, 0.016, 0.016, 0.016, 0.016, 6.05, 1.01, 6.05, 1.01, 6.05, 1.01, 6.05,
1.01, 6.05, 1.01] [CALIBRATE_PHA		-				
22:13:14.9 - 22:13		2 B335		-		2,23,24] [1.15, 0.016, 0.016, 0.016, 0.016, 0.576, 0.576, 0.576, 0.576, 0.576, 0.576, 0.576, 0.576, 0.57
			_	_		IENT, CALIBRATE_WVR#HOT, CALIBRATE_WVR#OFF_SOURCE]
22:13:35.6 - 22:20		2 B335	6673086	[4,13,1	14, 15, 16, 23, 24, 25, 26, 27,	8,29,30,31,32] [1.15, 0.016, 0.016, 0.016, 0.016, 6.05, 1.01, 6.05, 1.01, 6.05, 1.01, 6.05,
1.01, 6.05, 1.01] [OBSERVE_TARGET#ON_SOURCE]						
22:20:52.2 - 22:21		1 J1938+0448		-		2,23,24] [1.15, 0.016, 0.016, 0.016, 0.016, 0.576, 0.576, 0.576, 0.576, 0.576, 0.576, 0.576, 0.576, 0.57
6, 0.576] [CALIBRATE_ATMOSPHERE#AMBIENT, CALIBRATE_ATMOSPHERE#HOT, CALIBRATE_ATMOSPHERE#OFF_SOURCE, CALIBRATE_WVR#AMBIENT, CALIBRATE_WVR#OFF_SOURCE]						
22:21:14.1 - 22:21		1 J1938+0448	476637	[4,13,1	14, 15, 16, 23, 24, 25, 26, 27,	8,29,30,31,32] [1.15, 0.016, 0.016, 0.016, 0.016, 6.05, 1.01, 6.05, 1.01, 6.05, 1.01, 6.05,
1.01, 6.05, 1.01] [CALIBRATE_PHASE#ON_SOURCE, CALIBRATE_WVR#ON_SOURCE]						

Home By Topi

Warnings and Errors

Stage	Task	Туре	Message
10	hif_lowgainflag	Warning	uidA002_Xe1f219_X78a6.ms - the following antennas are moved to the end of the refant list because they are fully flagged for one or more spws: DA58 and DA61
12	hifa_bandpassflag	Warning	uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 23, the following antennas are fully flagged: DV03
12	hifa_bandpassflag	Warning	uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 25, the following antennas are fully flagged: DV03
12	hifa_bandpassflag	Warning	uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 27, the following antennas are fully flagged: DA58, DA61, DV03
12	hifa_bandpassflag	Warning	uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 29, the following antennas are fully flagged: DA58, DA61, DV03
12	hifa_bandpassflag	Warning	uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 31, the following antennas are fully flagged: DA61, DV03
12	hifa_bandpassflag	Warning	uidA002_Xe1f219_X78a6.ms - the following antennas are fully flagged in all spws for one or more fields with intents among BANDPASS: DV03
12	hifa_bandpassflag	Warning	uidA002_Xe1f219_X78a6.ms - the following reference antennas are removed from the refant list because they became fully flagged in all spws for one of the intents among BANDPASS: DV03
12	hifa_bandpassflag	Warning	uidA002_Xe1f219_X78a6.ms - the following antennas are moved to the end of the refant list because they are fully flagged for one or more spws, in one or more fields with intents among BANDPASS: DA58 and DA61
13	hifa_spwphaseup	QA Warning	Spw mapping across sidebands required for uidA002_Xe1f219_X78a6.ms
13	hifa_spwphaseup	Warning	Some low SNR spws - using highest good SNR window for these in uidA002_Xe1f219_X78a6.ms

Tasks by Topic

Торіс	Lowest Scoring Task		Min Score	
Data Sets	17. hif_applycal: Apply calibrations from context			0.91
Calibration	13. hifa_spwphaseup: Spw phase offsets calibration Sp	pw mapping across sidebands		0.66
Flagging	17. hif_applycal: Apply calibrations from context			0.91
Imaging	19. hif_makeimages: Make calibrator images			1.00
Miscellaneous	5. hif_refant: Select reference antennas			1.00

Total unflaggedAntena : 42Flagged: 3Total flagged Antena: 39 > 35

Home By Topic By Task

Flagging Summaries

uid___A002_Xe1f219_X78a6.ms

spw	DA41	DA42	DA43	DA44	DA45	DA46	DA47	DA48	DA49	DA50	DA51	DA52	DA53	DA55	DA56	DA57	DA58	DA59	DA60	DA61	DA62	DA65	DV01	DV03	DV04	DV05	DV06	DV07	DV09	DV11	DV12	DV13	DV14	DV15	DV16	DV18	DV19	DV20	DV21 🔺
23	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	100.00	29.90	29.90	100.00	29.90	29.90	29.90	100.00	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90	29.90
25	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52		9.52	9.52		9.52	9.52	9.52		9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52
27	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52		9.52	9.52		9.52	9.52	9.52	100.00	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52
29	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	100.00	9.52	9.52	100.00	9.52	9.52	9.52	100.00	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52
31	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	100.00	9.52	9.52	100.00	9.52	9.52	9.52	100.00	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52
																																							•

Flagging percentages for Source name: J1924-2914, Intents: ATMOSPHERE, AMPLITUDE, POINTING, WVR, BANDPASS

Flagging percentages for Source name: B335, Intents: ATMOSPHERE, TARGET

spw	DA41	DA42	DA43	DA44	DA45	DA46	DA47	DA48	DA49	DA50	DA51	DA52	DA53	DA55	DA56	DA57	DA58	DA59	DA60	DA61	DA62	DA65	DV01	DV03	DV04	DV05	DV06	DV07	DV09	DV11	DV12	DV13	DV14	DV15	DV16	DV18	DV19	DV20	DV21
23	36.35	36.35	36.35	36.31	36.28	36.28	36.35	36.35	36.35	36.28	36.31	36.31	36.35	36.31	36.31	36.35	100.00	36.35	36.31	100.00	36.35	36.31	36.31	100.00	36.35	36.35	36.31	36.31	36.35	36.31	36.35	36.31	36.35	36.35	36.31	36.31	36.35	36.31	36.35
25	9.93	9.93	9.93	9.88	9.83	9.83	9.93	9.93	9.93	9.83	9.87	9.88	9.93	9.88	9.87	9.93		9.93	9.88	100.00	9.93	9.87	9.88	100.00	9.93	9.93	9.88	9.87	9.93	9.87	9.93	9.87	9.93	9.93	9.87	9.88	9.93	9.87	9.93
27	9.93	9.93	9.93	9.88	9.83	9.83	9.93	9.93	9.93	9.83	9.87	9.88	9.93	9.88	9.87	9.93		9.93	9.88		9.93	9.87	9.88	100.00	9.93	9.93	9.88	9.87	9.93	9.87	9.93	9.87	9.93	9.93	9.87	9.88	9.93	9.87	9.93
29	9.93	9.93	9.93	9.88	9.83	9.83	9.93	9.93	9.93	9.83	9.87	9.88	9.93	9.88	9.87	9.93	100.00	9.93	9.88	100.00	9.93	9.87	9.88	100.00	9.93	9.93	9.88	9.87	9.93	9.87	9.93	9.87	9.93	9.93	9.87	9.88	9.93	9.87	9.93
31	9.93	9.93	9.93	9.88	9.83	9.83	9.93	9.93	9.93	9.83	9.87	9.88	9.93	9.88	9.87	9.93	100.00	9.93	9.88	100.00	9.93	9.87	9.88	100.00	9.93	9.93	9.88	9.87	9.93	9.87	9.93	9.87	9.93	9.93	9.87	9.88	9.93	9.87	9.93
																																							-

← → C ③ File /home/shlee/ALMA/alma_summer_school/weblog_cal/t1-4.html		ବ < 🕁 🔲
Home By Topic By Task		2019.1.00
Task Summaries		
Task	QA Score	Duration
1. hifa_importdata: Register measurement sets with the pipeline	1.00	1:22:59
2. hifa_flagdata: ALMA deterministic flagging	1.00	6:27:26
3. hifa_fluxcalflag: Flag spectral features in solar system flux calibrators	1.00	0:00:14
4. hif_rawflagchans: Flag channels in raw data	1.00	0:36:44
5. hif_refant: Select reference antennas	1.00	0:01:28
6. h_tsyscal: Calculate Tsys calibration	1.00	0:23:31
7. hifa_tsysflag: Flag Tsys calibration	0.96	0:33:28
8. hifa_antpos: Correct for antenna position offsets	Nonzero antenna position offsets 0.90	0:00:19
9. hifa_wvrgcalflag: Calculate and flag WVR calibration	0.97	0:44:12
10. hif_lowgainflag: Flag antennas with low gain	1.00	0:58:51
11. hif_setmodels: Set calibrator model visibilities	1.00	0:42:46
12. hifa_bandpassflag: Phase-up bandpass calibration and flagging	0.91	4:12:00
13. hifa_spwphaseup: Spw phase offsets calibration	Spw mapping across sidebands 0.66	0:11:32
14. hifa_gfluxscaleflag: Phased-up flux scale calibration + flagging	1.00	1:19:15
15. hifa_gfluxscale: Transfer fluxscale from amplitude calibrator	1.00	1:10:40
16. hifa_timegaincal: Gain calibration	1.00	2:03:46
17. hif_applycal: Apply calibrations from context	0.91	5:43:33
18. hif_makeimlist: Set-up parameters for bandpass calibrator & flux calibrator & phase calibrator imaging	1.00	0:05:20

No clean targets expected

Nothing to image

19. hif_makeimages: Make calibrator images

20. hif_makeimlist: Set-up parameters for check source imaging

21. hif_makeimages: Make check source images

22. hifa_imageprecheck: ImagePreCheck

23. hif_checkproductsize: Check product size

0:15:17

1:08:43

0:00:20

0:00:25

3:57:20

1.00

N/A

N/A

1.00

1.00

Tasks in execution order				DV12	5.12e-04	-4.73e-04	-4.66e-04
1. hifa_importdata							
2. hifa_flagdata				DV13	7.39e-04	-2.11e-03	-9.14e-04
				DV15	9.47e-04	-6.90e-04	-5.70e-04
3. hifa_fluxcalflag				5415	5.47 0.04	-0.906-04	-5.700-04
4. hif_rawflagchans				DV16	3.80e-04	-3.91e-04	-2.02e-04
5. hif_refant							
6. h_tsyscal				DV18	2.69e-04	-1.56e-04	1.42e-04
7. hifa_tsysflag				DV19	1.11e-04	-1.76e-03	-3.78e-04
8. hifa_antpos	?						
9. hifa_wvrgcalflag				DV21	2.88e-04	1.78e-05	2.63e-04
10. hif_lowgainflag	0			DV23	2.53e-05	7.57e-04	6.87e-04
11. hif_setmodels							
12. hifa_bandpassflag	0			DV25	4.57e-04	-1.76e-04	9.46e-05
13. hifa_spwphaseup	0,	Antenna position offsets per m	easurement set				
14. hifa_gfluxscaleflag							
15. hifa_gfluxscale		Pipeline QA					
16. hifa_timegaincal		<u></u>					
17. hif_applycal		Score	Reason				
18. hif_makeimlist (cals)		00016	Neusvit				

29 nonzero antenna position offsets for uid___A002_Xe1f219_X78a6.ms

19. hif_makeimages (cals)

20. hif_makeimlist (checksrc)

21. hif_makeimages (checksrc)

22. hifa_imageprecheck

Pipeline QA summary for this task.

0.90

Tasks in execution order

hifa_importdata

- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck

10. Flag antennas with low gain

Task notifications

Warning! uid___A002_Xe1f219_X78a6.ms - the following antennas are moved to the end of the refant list because they are fully flagged for one or more spws: DA58 and DA61

Reference Antenna update

For the measurement set(s) listed below, the reference antenna list was updated due to significant flagging (antennas moved to end). See warnings in task notifications for details. Shown below are the updated reference antenna lists, only for those measurement sets where it was modified.

Measurement Set	Reference Antennas (Highest to Lowest)									
uidA002_Xe1f219_X78a6.ms	DA43, DV19, DV05, DA48, DA44, DA65, DA42, DA50, DV06, DA57, DV21, DV07, DA55, DA46, DA49, DV12, DV15, DV25, DV01, DA41, DA47, DA59, DA45, DV20, DV09, DV23, DA53, DA62, DA56, DA60, DV18, DA51, DV22, DA52, DV11, DV16, DV13, DV04, DV14, DV03, DA58, DA61									
Jpdated reference antenna selection per measurement set. Antennas are listed in order of highest to lowest priority.										

Flags

0

Ω

Measurement Set	Flagging Commands	Number of Statements	Flagging Views
uidA002_Xe1f219_X78a6.ms	uidA002_Xe1f219_X78a6.ms-flag_commands.txt	0	Display

2019.1.00720.S

BACK

Flux calibter should be

monitored within a week

Tasks in execution order

لې ملسم

- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

1. Import Data

0

0

0

0

Data from 1 measurement set was registered with the pipeline. The imported data is summarised below.

				Number Impo	rted			
Measurement Set	SchedBlock ID	Src Type	Dst Type	Scans	Fields	Flux Densities	Size	flux.csv
uidA002_Xe1f219_X78a6.ms	uid://A001/X1469/Xba	ASDM	MS	32	3	10	55.6 GB	View or download

Summary of Imported Measurement Sets

Imported Flux Densities

The following flux densities were imported into the pipeline context:

			Flux Density					Age Of Nearest
Measurement Set	Field	SpW	I.	Q	U	v	Spix	Monitor Point (days)
uidA002_Xe1f219_X78a6.ms	J1924-2914 (#0)	23	2.803 Jy	0.000 Jy	0.000 Jy	0.000 Jy	-0.574140895422	-2.0
		25	2.735 Jy					N/A
		27	2.738 Jy					
		29	2.739 Jy					
		31	2.812 Jy					
	J1938+0448 (#1)	23	124.000 mJy				-0.530530893799	
	25	25	121.200 mJy					81.0
		27	121.400 mJy					N/A
		29						
		31	124.400 mJy					

stad from the ACDM Online ilable for ALM

By Topic By Task 🕈 Home لکی

Tasks in execution order

1. hifa_importdata

2. hifa_flagdata

3. hifa_fluxcalflag

4. hif_rawflagchans

5. hif_refant

6. h_tsyscal

7. hifa_tsysflag

8. hifa_antpos

9. hifa_wvrgcalflag

10. hif_lowgainflag

11. hif_setmodels

12. hifa_bandpassflag

13. hifa_spwphaseup

14. hifa_gfluxscaleflag

16. hifa_timegaincal

17. hif_applycal

18. hif_makeimlist (cals)

19. hif_makeimages (cals)

20. hif_makeimlist (checksrc)

21. hif_makeimages (checksrc)

22. hifa_imageprecheck

23. hif_checkproductsize

The following antennas were used for flux scaling, entries for unresolved flux calibrators are blank UV Range Measurement Set Antennas uid___A002_Xe1f219_X78a6.ms

Antennas for Flux Calibration

0

Computed Flux Densities

Check the consistency in Flux ratio!

The following flux densities were set in the measurement set model column and recorded in the pipeline context:

9					Derived Flux Density					
					Catalog Flux Density					
9 9	Measurement Set	Field	Spw	Frequency Bandwidth (TOPO)	1	Q	U	v	Flux Ratio (Derived / Catalog)	Spix
A	uidA002_Xe1f219_X78a6.ms	J1938+0448 (#1) PHASE	23	303.471 GHz 2.000 GHz	91.771 mJy ± 2.617 mJy (2.9%)	0.000 Jy	0.000 Jy	0.000 Jy	0.740	0.0
					124.000 mJy	0.000 Jy	0.000 Jy	0.000 Jy		
			25	316.782 GHz 234.375 MHz	99.991 mJy ± 3.299 mJy (3.3%)	0.000 Jy	0.000 Jy	0.000 Jy	0.825	
		121.		121.200 mJy	0.000 Jy	0.000 Jy	0.000 Jy			
			27	316.066 GHz 468.750 MHz	95.480 mJy ± 3.194 mJy (3.3%)	0.000 Jy	0.000 Jy	0.000 Jy	0.786	
					121.400 mJy	0.000 Jy	0.000 Jy	0.000 Jy		
			29	316.001 GHz 468.750 MHz	94.382 mJy ± 2.637 mJy (2.8%)	0.000 Jy	0.000 Jy	0.000 Jy	0.777	
					121.400 mJy	0.000 Jy	0.000 Jy	0.000 Jy		
			31	301.739 GHz 468.750 MHz	97.397 mJy ± 3.126 mJy (3.2%)	0.000 Jy	0.000 Jy	0.000 Jy	0.783	
					124.400 mJy	0.000 Jy	0.000 Jy	0.000 Jy		

Phased-up Fluxscale Results

2019.1.00720.S

ALMA Home By Topic By Tas

Tasks in execution order

1. hifa_importdata

2. hifa_flagdata

3. hifa_fluxcalflag

4. hif_rawflagchans

5. hif_refant

6. h_tsyscal

7. hifa_tsysflag

8. hifa_antpos

9. hifa_wvrgcalflag

10. hif_lowgainflag

11. hif_setmodels

12. hifa_bandpassflag

13. hifa_spwphaseup

14. hifa_gfluxscaleflag

15 hifa ofluxscale

16. hifa_timegaincal

17. hif_applycal

18. hif_makeimlist (cals)

19. hif_makeimages (cals)

20. hif_makeimlist (checksrc)

21. hif_makeimages (checksrc)

22. hifa_imageprecheck

23. hif_checkproductsize

ask			2019.1.00720.S
	The following antennas were used for flux scaling, entries for unresolved flux calibrators are blank		
	Measurement Set	UV Range	Antennas
	uidA002_Xe1f219_X78a6.ms		

Antennas for Flux Calibration

0

Computed Flux Densities

Check the consistency in Flux ratio!

The following flux densities were set in the measurement set model column and recorded in the pipeline context:

9					Derived Flux Density					
e					Catalog Flux Density					
9 9	Measurement Set	Field	Spw	Frequency Bandwidth (TOPO)	1	Q	U	v	Flux Ratio (Derived / Catalog)	Spix
9	uidA002_Xe1f219_X78a6.ms	J1938+0448 (#1) PHASE	23	303.471 GHz 2.000 GHz	91.771 mJy ± 2.617 mJy (2.9%)	0.000 Jy	0.000 Jy	0.000 Jy	0.740	0.0

Pipeline QA								
Score	Reason							
1.00 All expected derived fluxes present for uidA002_Xe1f219_X78a6.ms								
1.00	No low SNR derived fluxes for uidA002_Xe1f219_X78a6.ms							
1.00	Ratio of S _{derived} /S _{catalogue} for J1938+0448 (WVR,PHASE,ATMOSPHERE) spw 25 in uidA002_Xe1f219_X78a6.ms differs by 9% from the ratio for the highest SNR spw (23)							
1.00	Ratio of S _{derived} /S _{catalogue} for J1938+0448 (WVR,PHASE,ATMOSPHERE) spw 27 in uidA002_Xe1f219_X78a6.ms differs by 4% from the ratio for the highest SNR spw (23)							
1.00	Ratio of S _{derived} /S _{catalogue} for J1938+0448 (WVR,PHASE,ATMOSPHERE) spw 29 in uidA002_Xe1f219_X78a6.ms differs by 3% from the ratio for the highest SNR spw (23)							
1.00	Ratio of S _{derived} /S _{catalogue} for J1938+0448 (WVR,PHASE,ATMOSPHERE) spw 31 in uidA002_Xe1f219_X78a6.ms differs by 6% from the ratio for the highest SNR spw (23)							

Pipeline QA summary for this task.

لې ملسم 🕈 Home By Topic

0

0

0

0

Tasks in execution order

1. hifa_importdata

```
2. hifa_flagdata
```

3. hifa_fluxcalflag

- 4. hif_rawflagchans
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

ach antenna was ranked accordir	ng to a flagging score and a geometric score, based on the distance between the	antenna to the centre of the array.	
Measurement Set	Reference Antennas (Highest to Lowest)		
uidA002_Xe1f219_X78a6.ms	DA43, DV19, DV05, DA48, DA44, DA65, DA42, DA50, DV06, DA57, DV21, DV07, DV16, DV13, DV04, DA58, DA61, DV14, DV03	DA55, DA46, DA49, DV12, DV15, DV2	25, DV01, DA41, DA47, DA59, DA45, DV20, DV09, DV23, DA53, DA62, DA56, DA60, DV18, DA51, DV22, DA52, DV1
ference antenna selection per m	neasurement set. Antennas are listed in order of highest to lowest priority.	DA41: 103 m, -168° DA42: 46 m, 117° DA43: 19 m, -8°	Antenna Positions for uidA002_Xe1f219_X78a6.ms
Pipeline QA		DA44: 36 m, 10° DA45: 143 m, -108° DA46: 67 m, 29° DA47: 119 m, 171°	• DV11
Input Parameters		DA47: 119 m, 171 DA48: 34 m, -18° DA49: 83 m, -97° DA50: 49 m, 153°	300m DA56 DA51 DA52
Tasks Execution Statistics		DA51: 297 m, -37° DA52: 307 m, 34° DA53: 184 m, 38°	DV0DV15 DV25 DV13
CASA logs for stage 5		DA55: 67 m, -122° DA56: 230 m, -10° DA57: 58 m, -136°	DV20 DA46 DA61 DA58 DA46 DV21
View or download stage	5/casapy.log (33.7 KB)	DA58: 79 m, -40° DA59: 133 m, 98° DA60: 235 m, 94° DA61: 375 m, -68°	• DA43 30m • DV23 • DA43 • DV07
		DA62: 193 m, -144 DA65: 38 m, -150 DV01: 95 m, -12 DV03: 443 m, 7 DV04: 370 m, 150 DV05: 31 m, 125 DV06: 49 m, 176 DV07: 62 m, 81 DV09: 163 m, 129 DV11: 322 m, -9 DV12: 86 m, -25 DV13: 348 m, 60	DV22 DA49 DV19 DA59 DA60 DV05 DA42 DA45 DA55 DA6530m DA57 DA50 DV06 DV08
		DV14: 395 m, -131° DV14: 395 m, -131° DV15: 92 m, 2° DV16: 343 m, -164° DV19: 21 m, 156° DV20: 150 m, -51° DV21: 60 m, 41° DV22: 298 m, -94° DV23: 183 m, -83° DV25: 92 m, 22°	DV16 DV04

Tasks in execution order

- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag

8. hifa_antpos

9. hifa_wvrgcalflag

10. hif_lowgainfla

- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

10. Flag antennas with low gain

Task notifications

0

0

0

Warning! uid___A002_Xe1f219_X78a6.ms - the following antennas are moved to the end of the refant list because they are fully flagged for one or more spws: DA58 and DA61

Reference Antenna update

For the measurement set(s) listed below, the reference antenna list was updated due to significant flagging (antennas moved to end). See warnings in task notifications for details. Shown below are the updated reference antenna lists, only for those measurement sets where it was modified.

Measurement Set	Reference Antennas (Highest to Lowest)	Use this reference antenna during the selfcalibration
uidA002_Xe1f219_X78a6.ms	DA43, DV19, DV05, DA48, DA44, DA65, DA42, DA50, DV0 DV16, DV13, DV04, DV14, DV03, DA58, DA61	6, DA57, DV21, DV07, DA55, DA46, DA49, DV12, DV15, DV25, DV01, DA41, DA47, DA59, DA45, DV20, DV09, DV23, DA53, DA62, DA56, DA60, DV18, DA51, DV22, DA52, DV11,

Updated reference antenna selection per measurement set. Antennas are listed in order of highest to lowest priority.

Flags

Measurement Set	Flagging Commands	Number of Statements	Flagging Views			
uidA002_Xe1f219_X78a6.ms	uidA002_Xe1f219_X78a6.ms-flag_commands.txt	0	Display			
Report Files						
Pipeline QA						
Input Parameters						

Tasks Execution Statistics

CASA logs for stage 10

BACK

Tasks in execution order

- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applyc
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

17. Apply calibration tables

This task applies all calibrations registered with the pipeline to their target measurement sets.

Contents

- Applied calibrations
- Flagged data after calibration application
- Plots

0

0

0

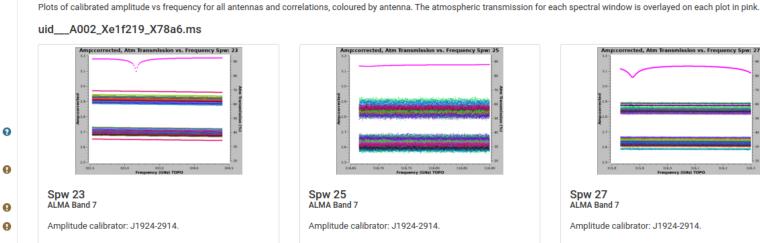
A

- Calibrated amplitude vs frequency
- Calibrated phase vs frequency
- Calibrated amplitude vs UV distance
- Calibrated amplitude vs time
- Calibrated phase vs time
- (Corrected amplitude / model) vs antenna
- (Corrected amplitude / model) vs UV distance
- Science target: calibrated amplitude vs frequency
- Science target: calibrated amplitude vs UV distance
- UV coverage

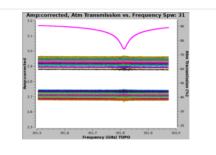
Applied calibrations

The Fields column lists fields within the measurement set containing any of the intents listed in the Intents column. If a field name is ambiguous and does not uniquely identify a field, e.g., when a field is observed with multiple intents, then the unambiguous field ID is listed instead of the field name. The order of entries in the Fields and Intents columns has no significance.

Measurement Set Target					Calibration							
Name	Final Size	Intent	Fields	Spw	Antenna	Туре	spwmap	gainfield	interp	calwt	table	
uidA002_Xe1f219_X78a6	ms 157.6 GB	TARGET	B335	23, 25, 27, 29, 31	0~41	T _{sys}	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 19, 21, 23, 17, 17, 19, 19, 21, 21, 23 , 23, 17 , 17, 19 , 19, 19 , 19, 21 , 21, 23 , 23, 17 , 17, 19 , 19, 19 , 19 , 19 , 21 , 21	B335	linear, linear	True	Filenam	
						antpos				False	Filenar	
						WVR			nearest	False	Filenar	
						Bandpass			linearperobs	True	Filenan	

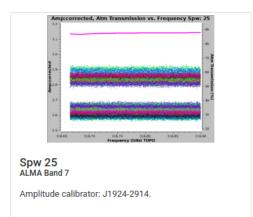

BACK

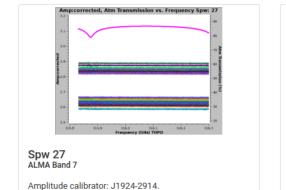
Tasks in execution order

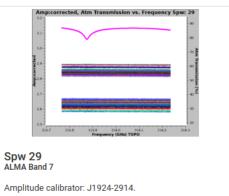

1. hifa_importdata

- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal

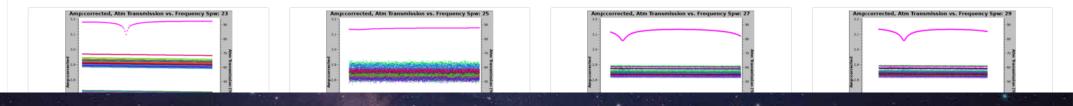
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize



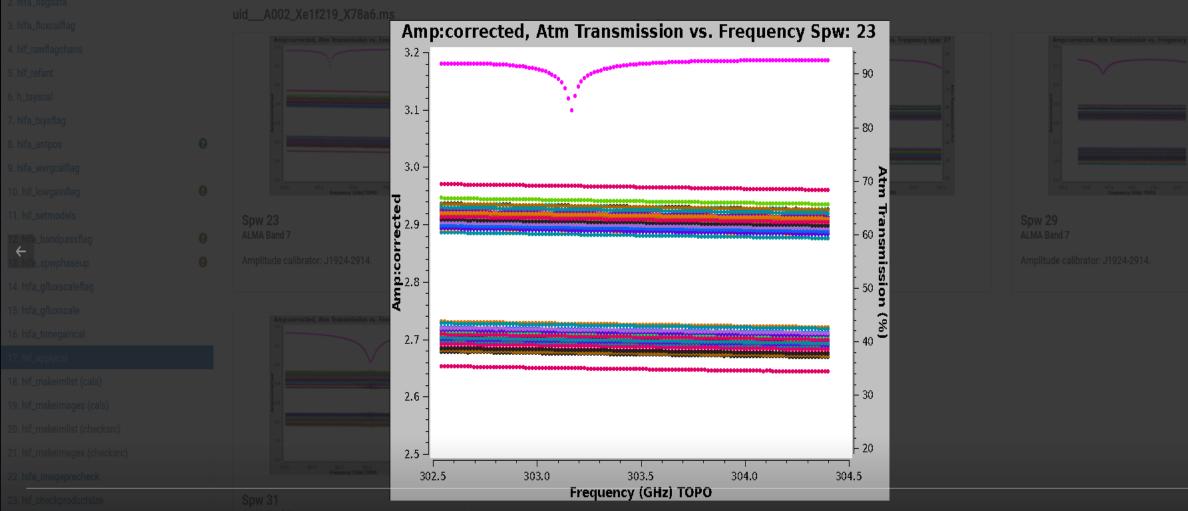

Calibrated amplitude vs frequency



Spw 31 ALMA Band 7

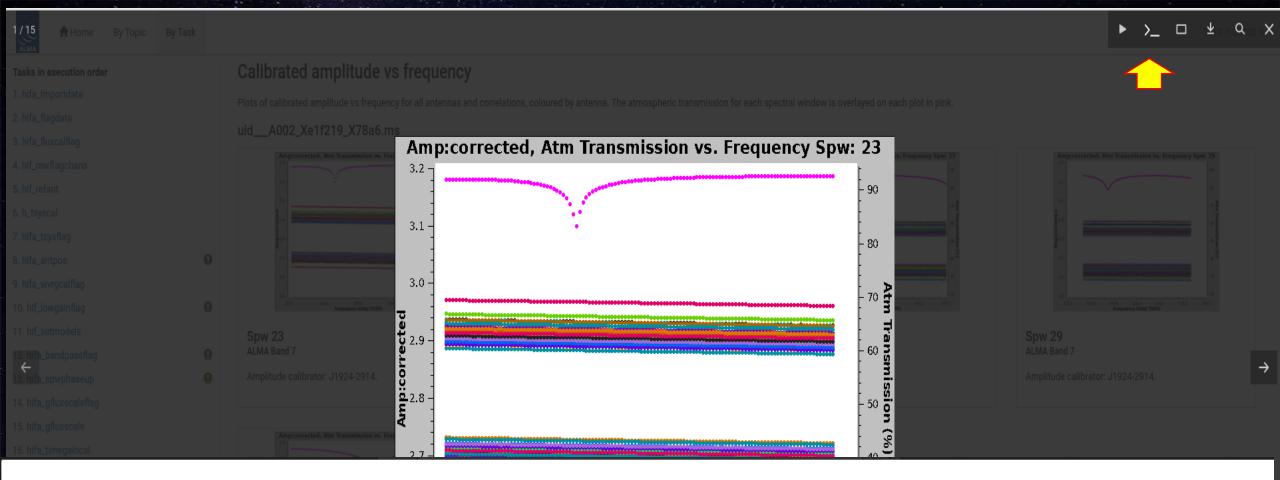

Amplitude calibrator: J1924-2914.

Bandpass (Amp vs. Freq) : check the outlier or line



15 A Home By Topic By Task

► >_ □ ±0008008X

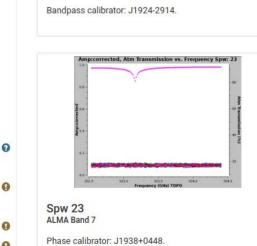

Calibrated amplitude vs free

Plots of calibrated amplitude vs frequency for all antennas and correlations, coloured by antenna. The atmospheric transmission for each spectral window is overlayed on each plot in pinl

Deceiver: ALMA Rand 7

 \rightarrow

Plot Command


plotms(vis='uid___A002_Xe1f219_X78a6.ms', xaxis='freq', yaxis='amp', ydatacolumn='corrected', field='J1924-2914', spw='23', correlation='XX,YY', intent='CALIBRATE_FLUX#ON_SOURCE', avgtime='1e8', avgscan=True, avgantenna=True, yselfscale=True, coloraxis='antenna1', plotrange=[0, 0, 0, 0], plotfile='uid___A002_Xe1f219_X78a6.ms-J1924-2914-spw23-AMPLITUDE-amp_vs_freq-XX_YY.png', overwrite=True, showgui=False, clearplots=True, showatm=True)

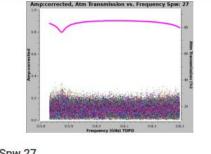
CLOSE


Tasks in execution order

AUMA

- 1. hifa_importdata
- 2. hifa_flagdata
- 2. magnagada
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applyca
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

ALMA Band 7



Spw 31 ALMA Band 7

Phase calibrator: J1938+0448.

Spw 25 ALMA Band 7 Phase calibrator: J1938+0448.

Spw 27 ALMA Band 7 Phase calibrator: J1938+0448. Spw 29 ALMA Band 7 Phase calibrator: J1938+0448

Phase calibrator (Amp vs. Freq)

: check the outlier or line (contribution of line to the total BW)

Calibrated phase vs frequency

Plots of calibrated phase vs frequency for all antennas and correlations, coloured by antenna.

uid___A002_Xe1f219_X78a6.ms

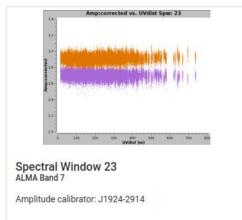
- Tasks in execution order
- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- ro. mi_iowgainia
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal

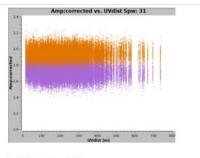
17. hif_applyca

- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

Calibrated amplitude vs UV distance

Plots of calibrated amplitude vs UV distance for the calibrators in each measurement set. Data are plotted for all antennas, coloured by correlation.

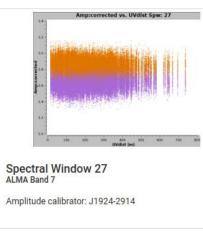

uid___A002_Xe1f219_X78a6.ms

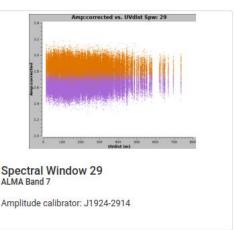

0

0

0

0


Amp:corrected vs. UVdist Spw: 23


tin bedachting ab hill b

Spectral Window 31 ALMA Band 7 Amplitude calibrator: J1924-2914

p:corrected vs. UVdist 5pw: 25

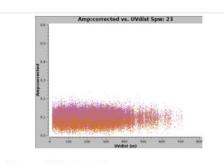
Amp:corrected vs. UVdist Spw: 29

Bandpass (Amp vs. UVdist)

: check the outlier and uv dist -independent

Amp:corrected vs. UVdist Spw: 27

A BARRIER AND A STATE


- Tasks in execution order
- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal

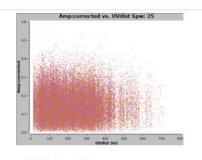
17. hif_applyca

- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

Spectral Window 31 ALMA Band 7

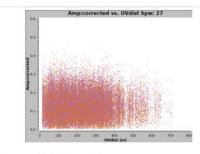
Bandpass calibrator: J1924-2914

Spectral Window 23 ALMA Band 7

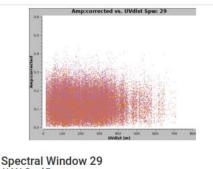

0

0

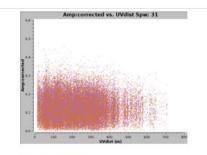
0


0

Phase calibrator: J1938+0448



Spectral Window 25 ALMA Band 7


Phase calibrator: J1938+0448

Spectral Window 27 ALMA Band 7 Phase calibrator: J1938+0448

Spectral Window 29 ALMA Band 7 Phase calibrator: J1938+0448

Spectral Window 31 ALMA Band 7 Phase calibrator: J1938+0448

Phase (Amp vs. UVdist)

: check the outlier and uv dist -independent

Calibrated amplitude vs time

Plots of calibrated amplitude vs time for all fields, antennas and correlations. Data are coloured by field.

Tasks in execution order

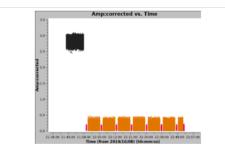
- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

Spectral Window 31

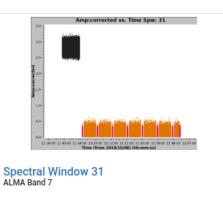
Phase calibrator: J1938+0448

Calibrated amplitude vs time

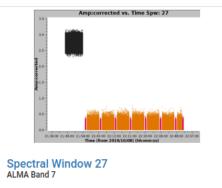
Plots of calibrated amplitude vs time for all fields, antennas and correlations. Data are coloured by field.

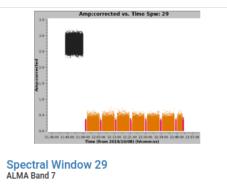

uid___A002_Xe1f219_X78a6.ms

Ð


0

0


A



Spectral Window 23 ALMA Band 7

Amp:corrected vs. Time Spw: 25

- ALL (Amp vs. UVdist)
- : check the outlier

Calibrated phase vs time

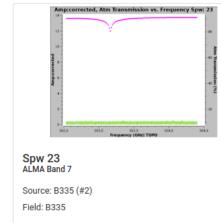
Tasks in execution order

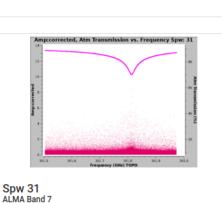
- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

Science target: calibrated amplitude vs frequency

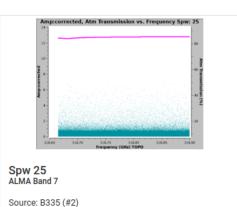
Calibrated amplitude vs frequency plots for the each measurement set's representative source. For mosaics, the representative field is identified as the field with the highest median channel-averaged amplitude, calculated over all science spectral windows. The atmospheric transmission for each spectral window is overlayed on each plot in pink.

Data are plotted for all antennas and correlations, with different spectral windows shown in different colours.

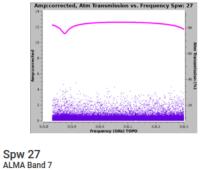

uid___A002_Xe1f219_X78a6.ms

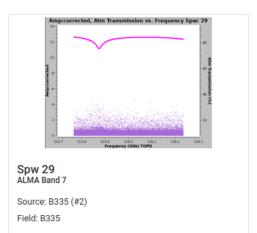

0

0


0

0




Source: B335 (#2) Field: B335

Field: B335

ALMA Band 7 Source: B335 (#2) Field: B335

Target (Amp vs. Freq) : check the outlier

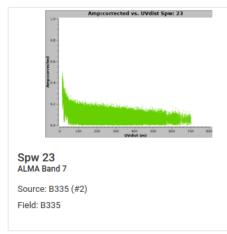
Tasks in execution order

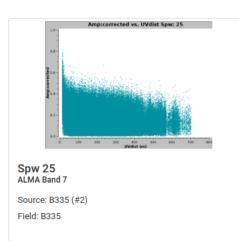
- hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- an life of l
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

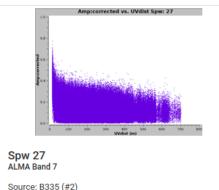
Science target: calibrated amplitude vs UV distance

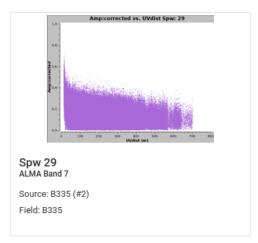
Calibrated amplitude vs frequency plots for the each measurement set's representative source. For mosaics, the representative field is identified as the field with the highest median channel-averaged amplitude, calculated over all science spectral windows. The atmospheric transmission for each spectral window is overlayed on each plot in pink.

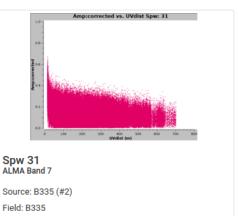
Data are plotted for all antennas and correlations, with different spectral windows shown in different colours.


uid___A002_Xe1f219_X78a6.ms


Ð


0


0


A

Target (Amp vs. uvdist) : check the outlier

Field: B335

لې ملسم	📌 Hom
------------	-------

By Task

0

0

0

0

Tasks in execution order

1. hifa_importdata

2. hifa_flagdata

3. hifa_fluxcalflag

- 4. hif_rawflagchans
- 5. hif_refant

6. h_tsyscal

o. n_toyoour	
7. hifa_tsysflag	

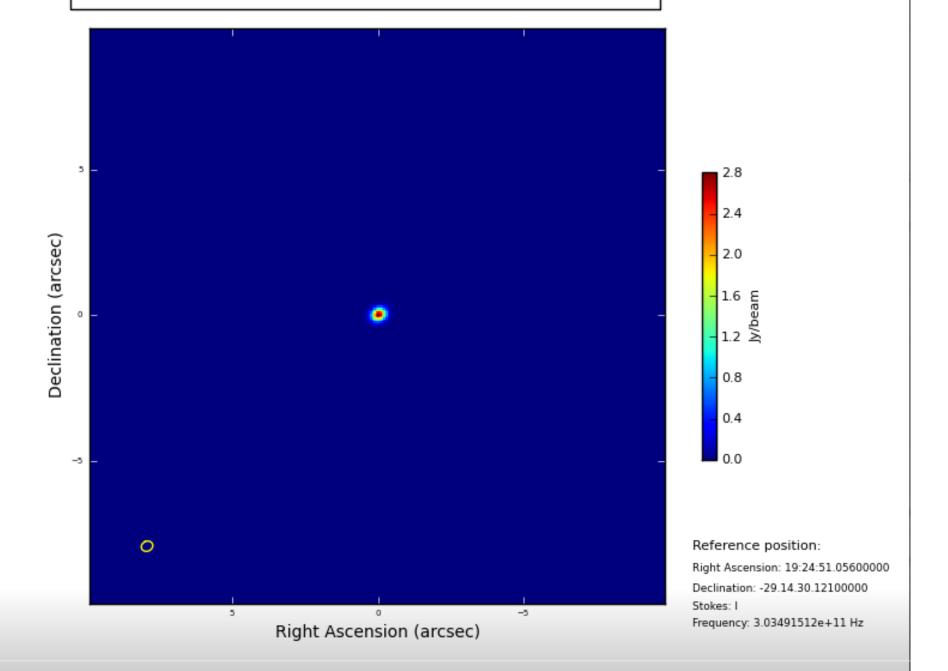
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)

19. hif_makeimages (cals)

20. hif_makeimlist (checksrc)

21. hif_makeimages (checksrc)

- 22. hifa_imageprecheck
- 23. hif_checkproductsize


19. Tclean/Makelmages	
-----------------------	--

Make calibrator images

Image Details

Field	Spw	Pol	Image details		Image result
J1924-2914 (BANDPASS)	23 / X176064364#ALMA_RB_07#BB_4#SW-01	I.	centre frequency of image	303.4915GHz (LSRK)	type image displaymean field(1924-2014 spx 23 mer.1
			beam	0.403 x 0.340 arcsec	C C
			beam p.a.	-64.7deg	
			final theoretical sensitivity	6.3e-05 Jy/beam	
			cleaning threshold	0.0021 Jy/beam Dirty DR: 4.4e+04 DR correction: 17	Right Accession further
			clean residual peak / scaled MAD	8.96	-
			non-pbcor image RMS	0.00025 Jy/beam	-
			pbcor image max / min	2.80 / -0.00213 Jy/beam	-
			fractional bandwidth / nterms	0.66% / 1	~
			aggregate bandwidth	2 GHz (LSRK)	-
			score	1.00	
			image file	uidA001_X1469_Xc4.s19_0.J1924-2914	L_bp.spw23.mfs.I.iter1.image

type:image display:mean field:J1924-2914 spw:23 iter:1

Tasks	ın	execution	order	

1.	hifa,	_impo	ortda	ata

2. hifa_flagdata

hifa_fluxcalflag

- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- - -
- 10. hif_lowgainflag
- 11. hif_setmodels

12. hifa_bandpassf

- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

12. Bandpass Calibration and Flagging

Task notifications
Warning! uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 23, the following antennas are fully flagged: DV03
Warning! uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 25, the following antennas are fully flagged: DV03
Warning! uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 27, the following antennas are fully flagged: DA58, DA61, DV03
Warning! uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 29, the following antennas are fully flagged: DA58, DA61, DV03
Warning! uidA002_Xe1f219_X78a6.ms - for intent BANDPASS (field J1924-2914) and spw 31, the following antennas are fully flagged: DA61, DV03
Warning! uidA002_Xe1f219_X78a6.ms - the following antennas are fully flagged in all spws for one or more fields with intents among BANDPASS: DV03
Warning! uidA002_Xe1f219_X78a6.ms - the following reference antennas are removed from the refant list because they became fully flagged in all spws for one of the intents among BANDPASS: DV03
Warning! uidA002_Xe1f219_X78a6.ms - the following antennas are moved to the end of the refant list because they are fully flagged for one or more spws, in one or more fields with intents among BANDPASS: DA58 and DA61

This task performs a preliminary bandpass solution and applies it, then computes the flagging heuristics by calling hif_correctedampflag which looks for outlier visibility points by statistically examining the scalar difference of the corrected amplitude minus model amplitudes, flags those outliers, then derives a final bandpass solution (if any flags were generated). The philosophy is that only outlier data points that have remained outliers after calibration will be flagged. Note that the phase of the data is not assessed.

In further detail, the workflow is as follows: an a priori calibration is applied using pre-existing caltables in the calibration state, a preliminary bandpass solution and amplitude gaincal solution is solved and applied, the flagging heuristics are run and any outliers are flagged, a final bandpass solution is solved (if necessary) and the name "final" is appended to this caltable. Plots are generated at two points in this workflow: after bandpass calibration but before flagging heuristics are run, and after flagging heuristics have been run and applied. If no points were flagged, the "after" plots are not generated or displayed. The score for this stage is a simple combination (multiplication) of the standard data flagging score (depending on the fraction of data flagged) and the score for the bandpass solution.

Contents

0

0

0

- Reference Antenna update table
- Flagging commands
- Flagged data summary table
- Bandpass results tables
- Amplitude/Phase vs frequency plots (per EB)
- Amplitude vs time plots for flagging

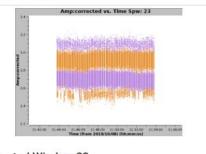
BACK

Tasks in execution order

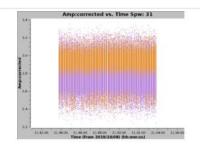
- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- TT. III_setHodels
- 13. hifa_spwphaseup
- rs. mra_spwpnaseu
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

Amplitude vs time

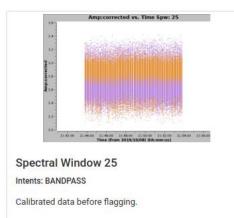
0

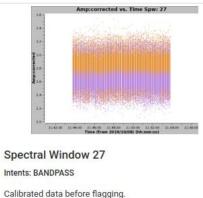

0

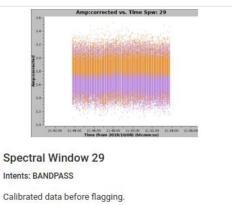
0


These plots show amplitude vs time for two cases: 1, the calibrated data before application of any flags; and 2, where flagging was applied, the calibrated data after application of flags.

Data are plotted for all antennas and correlations, with different correlations shown in different colours.


uid___A002_Xe1f219_X78a6.ms



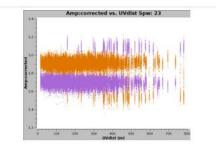

Spectral Window 23 Intents: BANDPASS Calibrated data before flagging.

Spectral Window 31 Intents: BANDPASS Calibrated data before flagging.

Before the flagging Amp vs. Time.

	Amp:corrected vs. Time Spw: 25	Amp:corrected vs. Time Spw: 27	Amp:corrected vs. Time Spw: 29
and a comparison of the second second	Martin Constant Street Street St	Str. Physics of Sec. 21	and and a first strategies the
STITLY ATTENDED OF A STORE	and the second se	Televante en anticipation de la constitución de	NAME AND A DESCRIPTION OF

Tasks in execution order

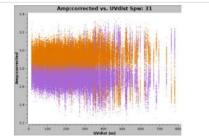

- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpass
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

Amplitude vs UV distance

These plots show amplitude vs UV distance for two cases: 1, the calibrated data before application of any flags; and 2, where flagging was applied, the calibrated data after application of flags.

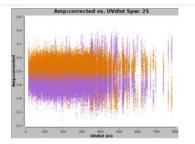
Data are plotted for all antennas and correlations, with different correlations shown in different colours.

uid___A002_Xe1f219_X78a6.ms

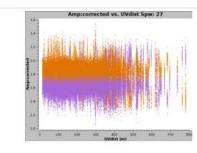


Spectral Window 23 Intents: BANDPASS Calibrated data before flagging.

0

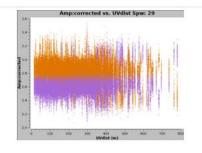

0

0



prrected vs. UVdist Spw: 23

Spectral Window 31
Intents: BANDPASS
Calibrated data before flagging.



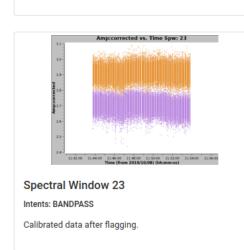
Spectral Window 25 Intents: BANDPASS Calibrated data before flagging.

Amp:corrected vs. UVdist Spw: 27

Spectral Window 27 Intents: BANDPASS Calibrated data before flagging.

Amp:corrected vs. UVdist Spw: 29

Spectral Window 29 Intents: BANDPASS Calibrated data before flagging.

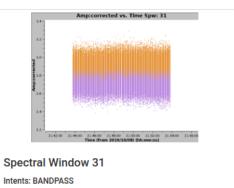

Before the flagging Amp vs. uv dist.

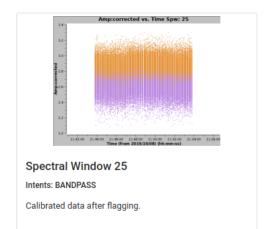
and sold to be

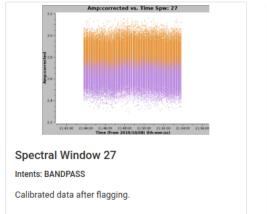
mp:corrected vs. UVdist 5pw: 25

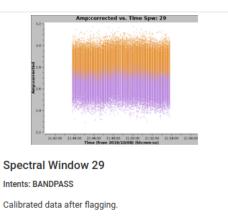
Tasks in execution order

- 1. hifa_importdata
- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize




onibilated data before hagging


0

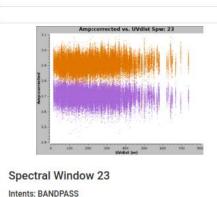

0

0

After the flagging Amp vs. Time.

Amplitude vs UV distance

Calibrated data after flagging.

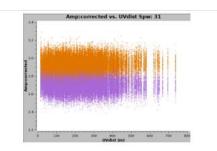

These plots show amplitude vs UV distance for two cases: 1, the calibrated data before application of any flags; and 2, where flagging was applied, the calibrated data after application of flags.

Data are plotted for all antennas and correlations, with different correlations shown in different colours.

uid___A002_Xe1f219_X78a6.ms

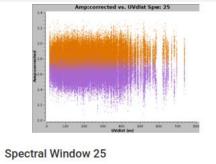
Tasks in execution order 1. hifa_importdata

- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 13. hifa_spwphaseup 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

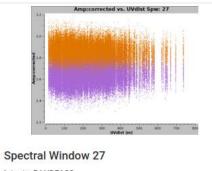

Intents: BANDPASS

0

0


0

Calibrated data before flagging.


Spectral Window 31 Intents: BANDPASS

Calibrated data after flagging.

Intents: BANDPASS

Calibrated data after flagging.

Intents: BANDPASS

Calibrated data after flagging.

After the flagging Amp vs. uv dist.

Pipeline QA		
Input Parameters		
Tasks Execution Statistics		

AUMA

Tasks in execution order

1. hifa_importdata

2. hifa_flagdata

3. hifa_fluxcalflag

4. hif_rawflagchans

5. hif_refant

6. h_tsyscal

- ,

7. hifa_tsysflag

8. hifa_antpos

9. hifa_wvrgcalflag

10. hif_lowgainflag

11. hif_setmodels

12. hifa_bandpassf

13. hifa_spwphaseup

14. hifa_gfluxscaleflag

15. hifa_gfluxscale

16. hifa_timegaincal

17. hif_applycal

18. hif_makeimlist (cals)

19. hif_makeimages (cals)

20. hif_makeimlist (checksrc)

21. hif_makeimages (checksrc)

22. hifa_imageprecheck

23. hif_checkproductsize

Parameters used for bandpass calibration

Plots

0

0

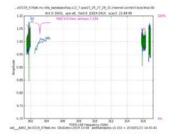
0

Plots show the bandpass correction applied to the target source. The first two plots show amplitude vs frequency; one for the reference antenna and one for a typical antenna, identified the antenna with mode score. The third plot shows phase vs frequency for the typical antenna.


Click the summary plots to enlarge them, or the plot title to see see detailed plots per spectral window and antenna.

111,0.244141WIMZ(1.001)

uid___A002_Xe1f219_X78a6.ms

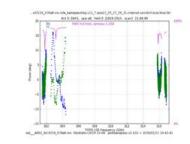

Amplitude vs frequency (show uid___A002_Xe1f219_X78a6.ms)

The plots below show amplitude vs frequency for the bandpass correction, overlayed for all spectral windows and correlations. Click on the link above to show show detailed plots for all antennas, or on the links below to show plots with specific antennas preselected.

Reference antenna (DA43) (show DA43)

Amplitude vs frequency for the reference antenna (DA43). Click the link above to show detailed plots for DA43.

Typical antenna (DA41) (show DA41)


31

Amplitude vs frequency for a typical antenna (DA41). Click the link above to show detailed plots for DA41.

NB. random antenna until scores are working

Phase vs frequency (show uid___A002_Xe1f219_X78a6.ms)

The plot below shows phase vs frequency for the bandpass correction, overlayed for all spectral windows and correlations. Click on the link above to show show phase vs frequency plots for all antennas, or on the link for just the typical antenna.

Typical antenna (DA41) (show DA41)

Phase vs frequency for a typical antenna (DA41). Click the link above to show detailed plots for DA41.

Amplitude vs time

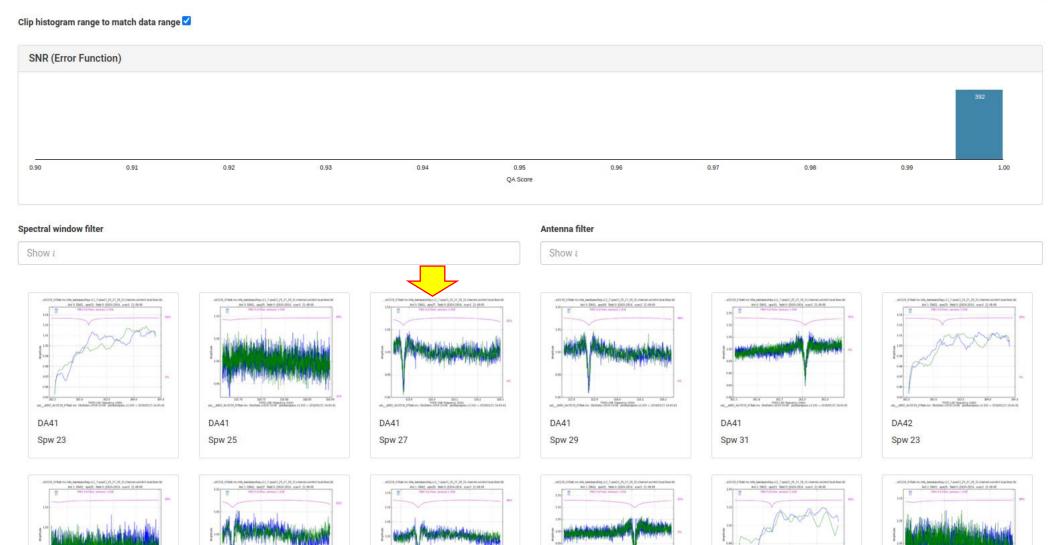
These plots show amplitude vs time for two cases: 1, the calibrated data before application of any flags; and 2, where flagging was applied, the calibrated data after application of flags.

Data are plotted for all antennas and correlations, with different correlations shown in different colours.

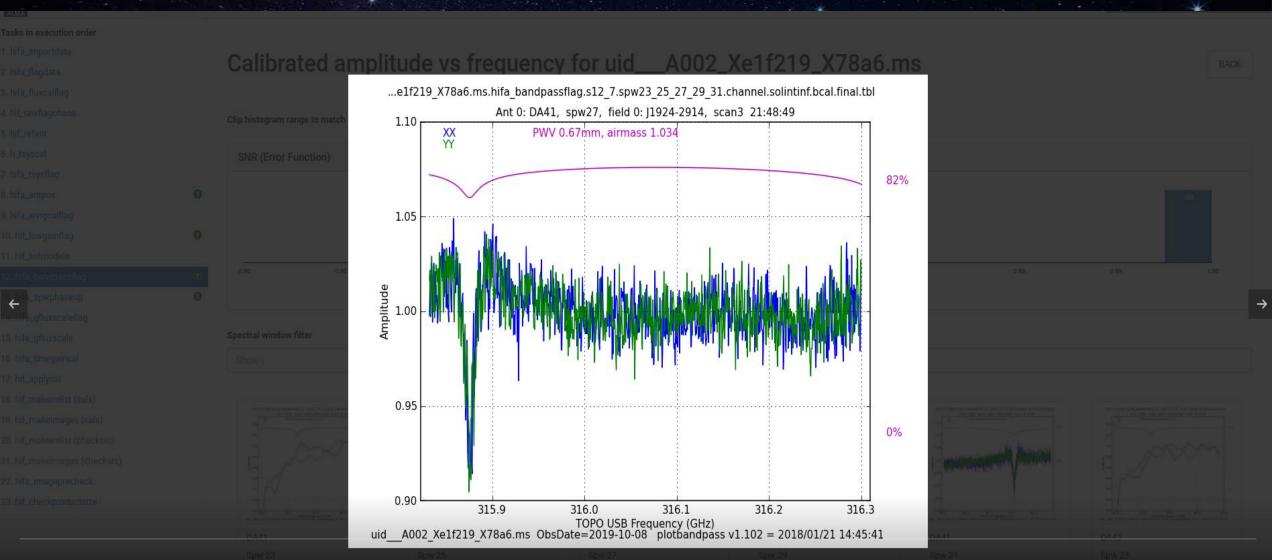
uid A002 Xe1f219 X78a6 ms

ALMA Tasks in execution order 1. hifa_importdata 2. hifa_flagdata 3. hifa_fluxcalflag 4. hif_rawflagchans Clip histogram range to match data range 🗹 5. hif_refant 6. h_tsyscal SNR (Error Function) 7. hifa_tsysflag 0 8. hifa_antpos

9. hifa_wvrgcalflag 10. hif_lowgainflag


0

0


11. hif_setmodels

- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

Calibrated amplitude vs frequency for uid___A002_Xe1f219_X78a6.ms

BACK

Antenna: DA41 Spectral Window: 27 Scores: XX=1.0, YY=1.0

Tasks in execution order

1. hifa_importdata

- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- -----
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag 10. hif_lowgainflag 11. hif_setmodels 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)

127.0.0.1:8080/stage21/t2-4m_details-container.html

9. WVR Calibration and Flagging

This task checks whether the WVR radiometers are working as intended, interpolating for antennas that are not. The WVR caltable is only added to subsequent pre-applys if it gives a tangible improvement.

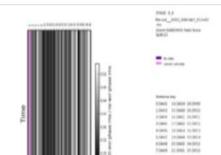
Results

Plots

0

0

0

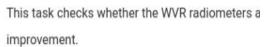

0

The pipeline tests whether application of WVR correction improves the data by performing a gaincal for a chosen field, usually the bandpass calibrator, and comparing the resulting phase corrections evaluated both with and without application of WVR correction. Plots based on these data in these evaluation caltables are presented below.

Flagging metric view(s)

The following plots show the flagging metric used by the pipeline to determine which antennas' WVR corrections to flag. The RMS phase during observation of the bandpass calibrator is calculated without WVR corrections applied, and with WVR corrections applied, and the metric is the ratio of those two RMS values. If the WVR measurements are corrupted, or the wvrgcal task itself flags the WVR data on a given antenna, then the pipeline will not calculate a metric here.

uid___A002_Xdb7ab7_X11e42.ms


Tasks in execution order

1. hifa_importdata

- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 7 14 10 100
- 7. hifa_tsysflag
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
 10. hif_lowgainflag
 11. hif_setmodels
 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)

127.0.0.1:8080/stage21/t2-4m_details-container.html

9. WVR Calibration and Flagging

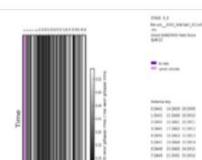
Results

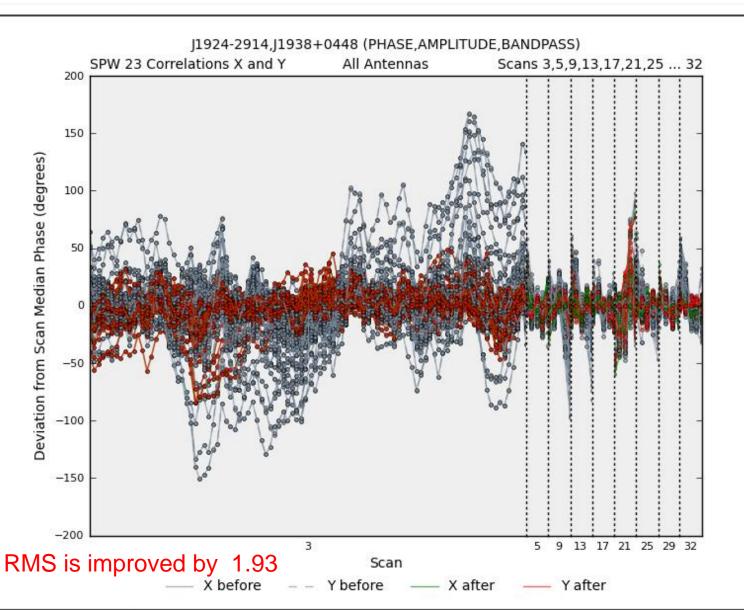
Plots

0

0

0


0


The pipeline tests whether application of WVR cc corrections evaluated both with and without appl

Flagging metric view(s)

The following plots show the flagging metric use without WVR corrections applied, and with WVR c WVR data on a given antenna, then the pipeline w

uid___A002_Xdb7ab7_X11e42.ms

0

0

0

0

BACK

Tasks in execution order

1. hifa_importdata

2. hifa_flagdata

لکی ۸۱۸۸

- 3. hifa_fluxcalflag
- 4. hif_rawflagchans

5. hif_refant

6. h_tsysca

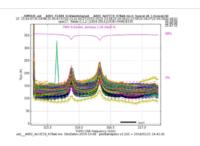
- 7. hifa_tsysflag
 8. hifa_antpos
- 9. hifa_wvrgcalflag 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

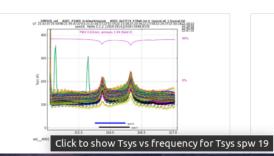
6. T_{sys} Calibration

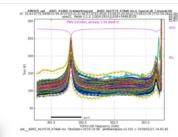
This task generates a T_{sys} calibration table, mapping each science spectral window to the T_{sys} window that overlaps in frequency.

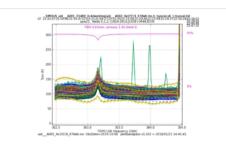
T_{sys} window mapping

Measurement Set	T _{sys} window	Science windows
uidA002_Xe1f219_X78a6.ms	17	25
	19	27, 29
	21	31
	23	23


Mapping of T_{sys} window to science window


Plots


T_{sys} vs frequency


Plots of time-averaged T_{sys} vs frequency, colored by antenna.

uid___A002_Xe1f219_X78a6.ms

BACK

Tasks in execution order

hifa_importdata

- 2. hifa_flagdata
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal

7. hifa_tsysflag

- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

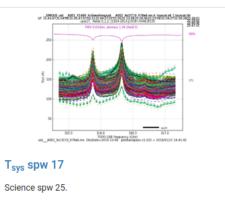
7. Flag T_{sys} calibration

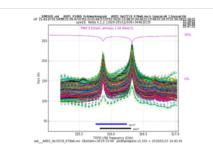
Contents

0

0

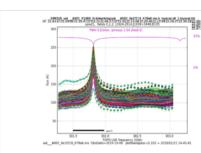
A

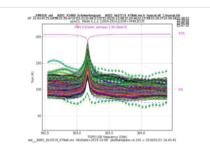

0


- T_{sys} after flagging
- Flagged data summary
- Flag step details
 - manual
 - nmedianderivative
 - edgechans
 - fieldshape
 - birdies
 - toomany

T_{sys} vs frequency after flagging

Plots of time-averaged T_{sys} vs frequency, colored by antenna.


uid___A002_Xe1f219_X78a6.ms



Science spws 27 and 29.

T_{sys} spw 21

Science spw 31.

T_{sys} spw 23

Science spw 23.

A Home By Topic By Task

Tasks in execution order

- 1. hifa_importdata
- 2. hifa_flagdata

ALMA

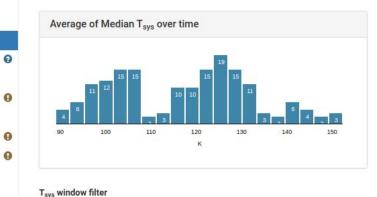
- 3. hifa_fluxcalflag
- 4. hif_rawflagchans
- 5. hif_refant
- 6. h_tsyscal
- 8. hifa_antpos
- 9. hifa_wvrgcalflag
- 10. hif_lowgainflag
- 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_spwphaseup
- 14. hifa_gfluxscaleflag
- 15. hifa_gfluxscale
- 16. hifa_timegaincal
- 17. hif_applycal
- 18. hif_makeimlist (cals)
- 19. hif_makeimages (cals)
- 20. hif_makeimlist (checksrc)
- 21. hif_makeimages (checksrc)
- 22. hifa_imageprecheck
- 23. hif_checkproductsize

T_{sys} plots for uid___A002_Xe1f219_X78a6.ms

Clip histogram range to match data range 🗹

Show a

and states and states


DA41

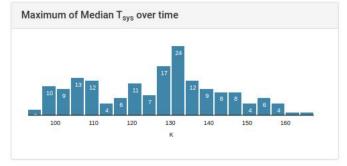
T_{sys} spw 17

Science spw 25

and the second s

No week

All ALL ADDRESS OF


and Manual

DA41

T_{sys} spw 19

Science spw 27,29

w 1999 with All of the Advertised All with a first state of the advertised and a set o

ADDED OF ADD

DA41

T_{sys} spw 23

NT AND YT MANNED

Science spw 23

or many and and the second sec

See Wanted

INC.1 Interciple Interview

RMS deviation from Average Median T_{sys} 2 12 18 4 8 10 14 16

Spectral window filter

Show a

INCOME.

DA41

T_{sys} spw 21

NY daries

Science spw 31

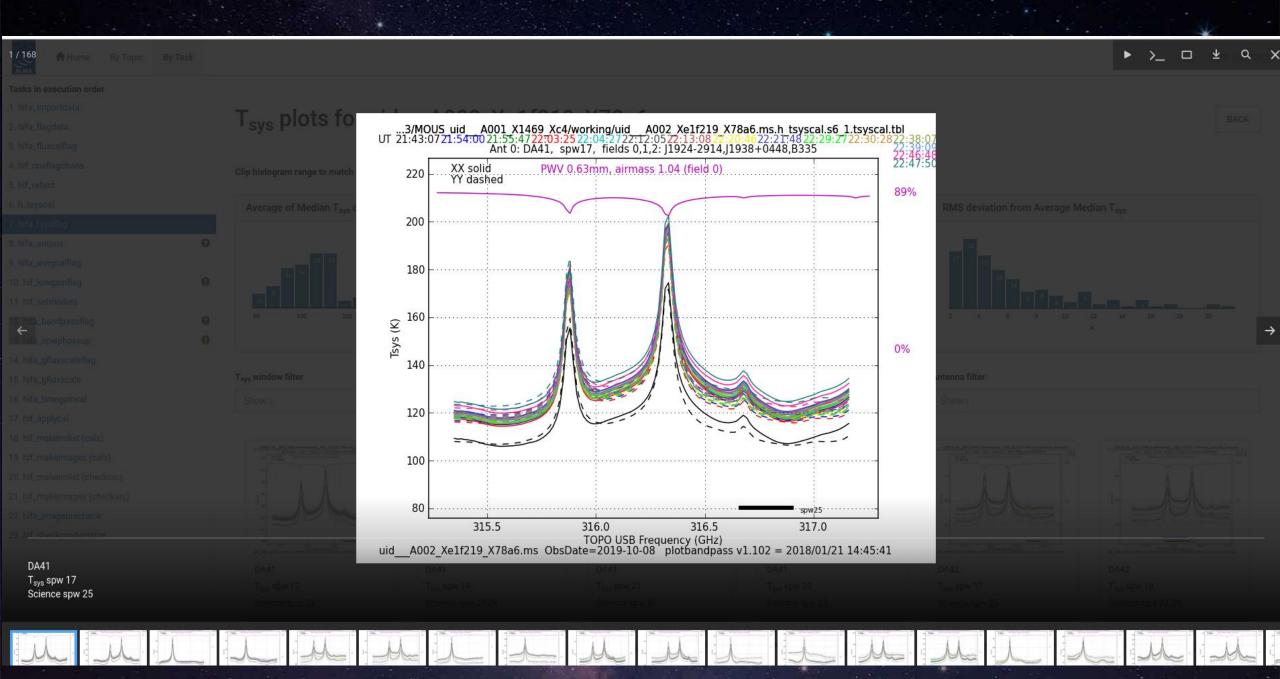
and the second s

NY other

Show a

at Manual Arr, Man Advanced Arr, Arr, Arrister and the Manual Arr. Solution and the Manual Arr. Solutio

To and


Antenna filter

1 Martin and Arris No actual All solid **DA42 DA42** T_{sys} spw 17 T_{sys} spw 19 Science spw 25 Science spw 27,29

an and the second secon

2019.1.00720.S

BACK

Renomalization: bright (CO) line emission

		 1.00	0.21.01
17. hifa_timegaincal: Gain calibration		1.00	1:01:24
18. hifa_targetflag: Target outlier flagging		1.00	0:13:21
19. hif_applycal: Apply calibrations from context		1.00	1:00:08
20. hif_makeimlist: Set-up parameters for flux calibrator & phase calibrator & bandpass calibrator imaging		1.00	0:04:40
21. hif_makeimages: Make calibrator images		1.00	0:12:14
22. hif_makeimlist: Set-up parameters for check source imaging	No clean targets expected	N/A	0:00:08
23. hif_makeimages: Make check source images	Nothing to image	N/A	0:00:08
24. hifa_imageprecheck: ImagePreCheck		1.00	0:28:43
25. hif_checkproductsize: Check product size		1.00	0:01:53
26. hifa_renorm: Renorm	Renormalization applied	0.90	0:10:29
27. hifa_exportdata: Prepare pipeline data products for export		1.00	0:02:23
28. hif_mstransform: Create science target MS		1.00	0:03:33
29. hifa_flagtargets: ALMA Target flagging		1.00	0:00:55
30. hif_makeimlist: Set-up parameters for target per-spw continuum imaging		1.00	0:00:39
9 31. hif_findcont: Detect continuum frequency ranges		1.00	0:47:03
32. hif_uvcontfit: UV continuum fitting		1.00	0:06:14

CASE1 : data don't trigger renomalization

26. hifa_renorm: Renorm

CASE II : data trigger renomalization (not applied)

9 26. hifa_renorm: Renorm

Renormalization factor outside threshold

0.63

CASE III : data trigger renomalization (applied)

9 26. hifa_renorm: Renorm

Renormalization applied

0.90

Tasks in execution order

0

0

0

0

0

1. hifa_importdata

ALMA

2. hifa_flagdata

3. hifa_fluxcalflag

4. hif_rawflagchans

5. hif_refant

6. h_tsyscal

7. hifa_tsysflag

8. hifa_antpos

9. hifa_wvrgcalflag

10. hif_lowgainflag

11. hif setmodels

12. hifa bandpassflag

13. hifa_bandpass

14. hifa_spwphaseup

15. hifa_gfluxscaleflag

16. hifa_gfluxscale

17. hifa_timegaincal

18. hifa_targetflag

19. hif_applycal

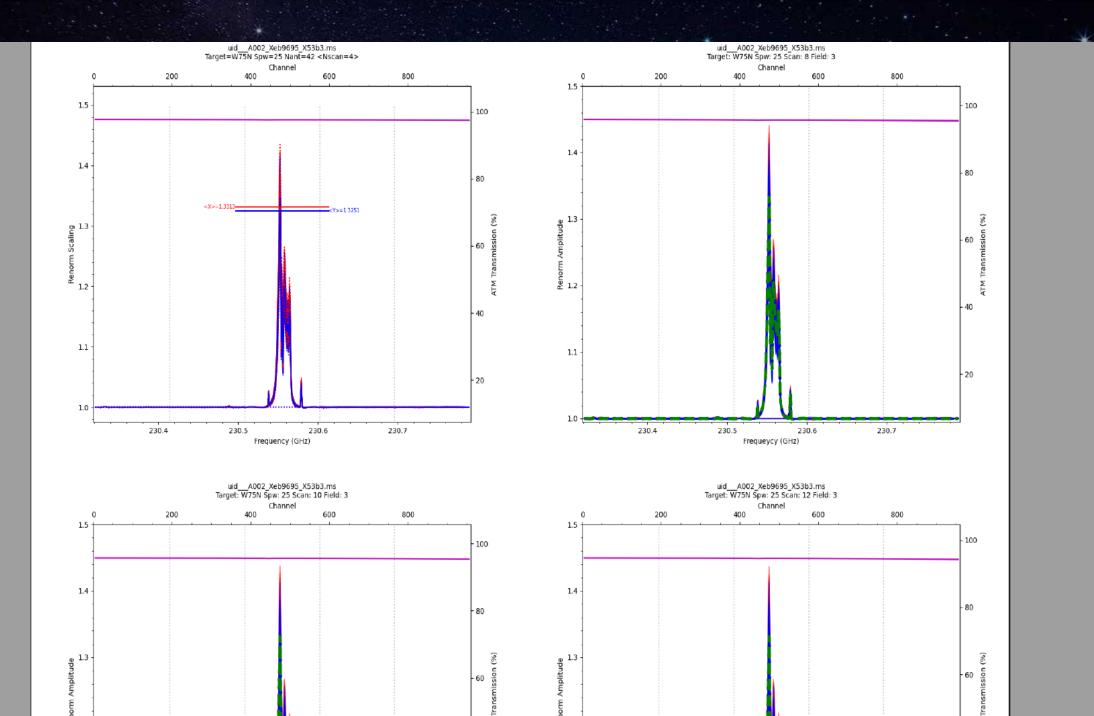
20. hif_makeimlist (cals)

21. hif_makeimages (cals)

22. hif_makeimlist (checksrc)

23. hif_makeimages (checksrc)

24. hifa_imageprecheck

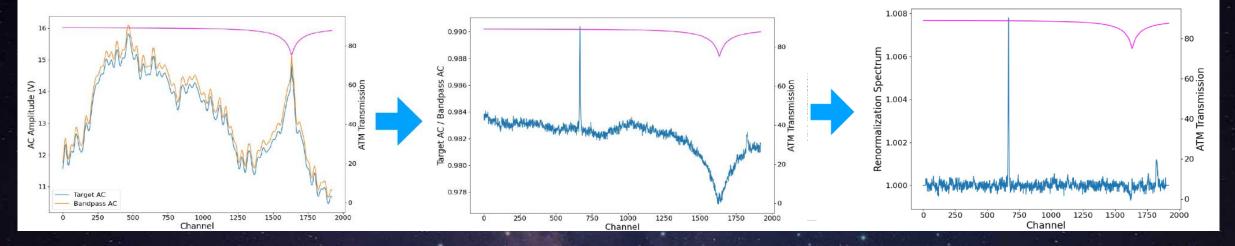

Heuristics in the renormalization script have been applied to detect and correct spikes, dips, and jumps near the segment boundaries (marked with thin vertical dotted lines). Less significant (below the threshold for applying the correction) features may remain.

Features in the scaling spectrum associated with atmospheric features require additional care - ALMA data reduction staff will have evaluated these and minimized them insofar as possible with current heuristics, but PIs should take note of the shape and magnitude of any applied correction when performing line science at frequencies overlapping atmospheric lines.

MS/Source/SPW that trigger the need for renormalization above a threshold of 1.02 highlighted in red.

Please refer to the Pipeline User's Guide (linked to this weblog's Home page) for more details on renormalization and interpretation of the plots.

MS Name	Source Name	SPW	Max Renorm Scale Factor (field id)	PDF Link to Diagnostic Plots
uidA002_Xeb9695_X53b3.ms	W75N	25	1.3311243 (3)	PDF
		27	1.2275826 (3)	PDF
		29	1.0989103 (3)	PDF
		31	1.0160516 (3)	PDF
		33	1.0734158 (3)	PDF
uidA002_Xfc434c_X4fd2.ms	2	25	1.307646 (3)	PDF
		27	1.2110302 (3)	PDF
		29	1.0911366 (3)	PDF
		31	1.0146296 (3)	PDF
		33	1.0666027 (3)	PDF



Renormlization spectra = (Target AC) / (Bandpass AC)

Individual AutoCorr

Divided Spectrum

ReNormalisation Spectrum

Tasks in execution order

1. hifa_importdata

2. hifa_flagdata

3. hifa_fluxcalflag

4. hif_rawflagchans

5. hif_refant

6. h_tsyscal

- 7. hifa_tsysflag
- 8. hifa_antpos 9. hifa_wvrgcalflag
- 10. hif_lowgainflag 11. hif_setmodels
- 12. hifa_bandpassflag
- 13. hifa_bandpass
- 14. hifa_spwphaseup
- 15. hifa_gfluxscaleflag
- 16. hifa_gfluxscale
- 17. hifa_timegaincal
- 18. hifa_targetflag
- 19. hif_applycal
- 20. hif_makeimlist (cals)
- 21. hif_makeimages (cals)
- 22. hif_makeimlist (checksrc)
- 23. hif_makeimages (checksrc)
- 24. hifa_imageprecheck

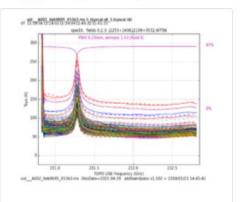
Mapping of T_{sys} window to science window

Plots

0

0

0

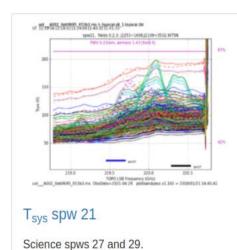

0

0

T_{sys} vs frequency

Plots of time-averaged T_{sys} vs frequency, colored by antenna.

uid___A002_Xeb9695_X53b3.ms

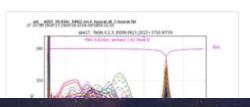


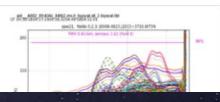
T_{sys} spw 19

Science spw 19.

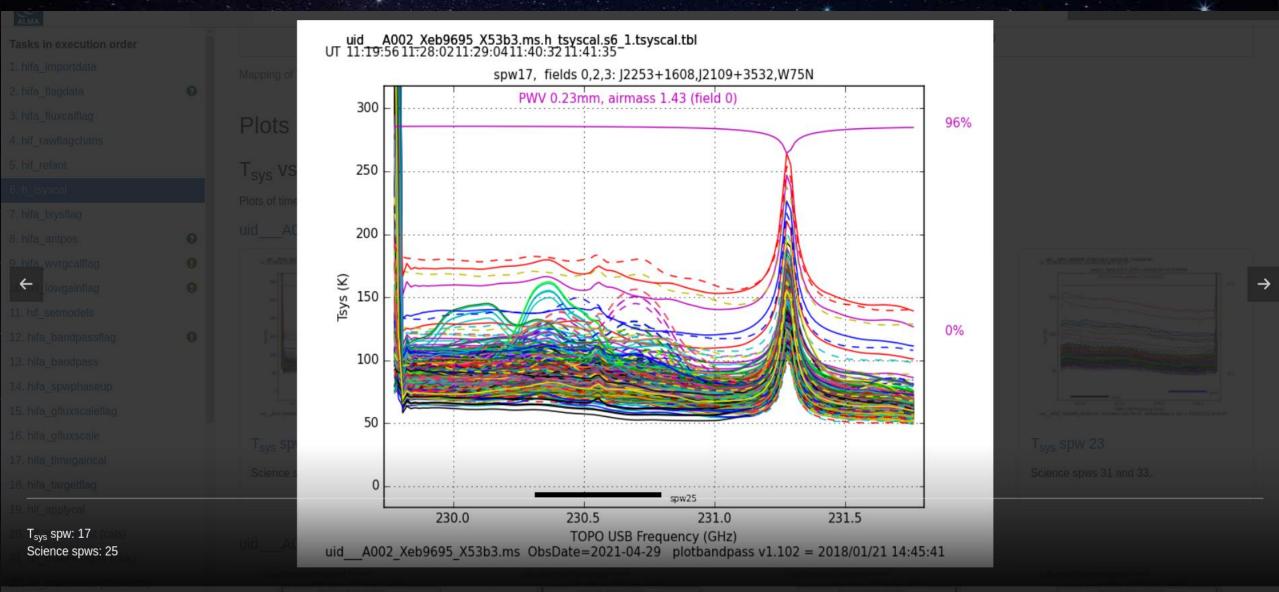
<figure><figure>

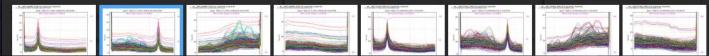
Science spw 25.

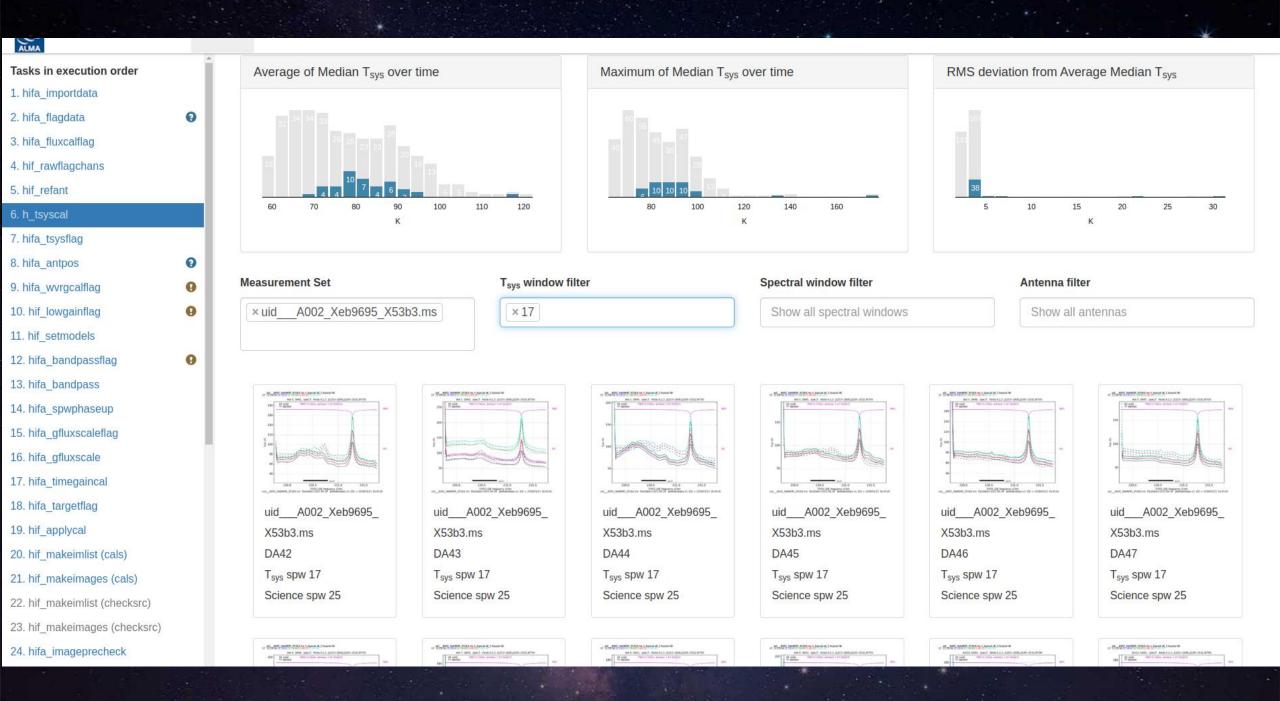


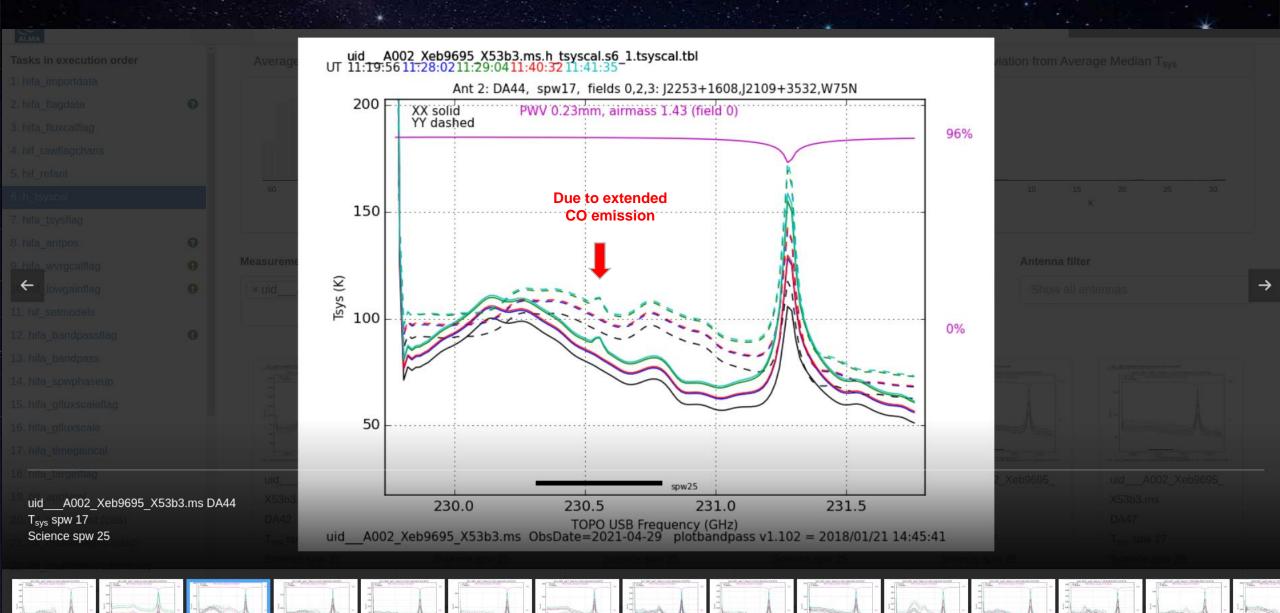

<figure>

Science spws 31 and 33.








23

31, 33

