CARTA: **Cube Analysis and Rendering** Tool for Astronomy **Using CARTA for proposal preparation**

Kuo-Song Wang (ASIAA) and the CARTA development team Korean ARC Townhall Meeting for Cycle 9 Proposal Preparation March 30, 2022

Outline

- Why you may consider to use CARTA for proposal preparation?
- ALMA Science Archive (ASA) and CARTA
- CARTA feature highlight
- Obtaining CARTA

TA for proposal preparation?

Outline

- Why you may consider to use CARTA for proposal preparation?
 - It saves a significantly large amount of your time download from the archive for detailed analysis - when working with large image cubes
- ALMA Science Archive (ASA) and CARTA
- CARTA feature highlight
- Obtaining CARTA

- when checking duplicated observations and deciding which datasets to

ALMA Science Archive and CARTA

ALMA Science Archive A great resource for verifying your great ideas

- ALMA Science portal https:// <u>almascience.nao.ac.jp/</u> https:// almascience.nrao.edu/ https:// <u>almascience.eso.org/</u>
- Data -> Archive -> Archive Query Interface

ALMA Basics	Cycle 9 Call for Proposals
ALMA Science	Cycle 9 Proposer's Guide
ALMA Primer	Proposing Guidance

ALMA Science Archive Archive Query Interface

- Search for your targets of interests with various query parameters
- Matched projects will be displayed in the table below
- Preview is now available (the icon just to the left of the project code)

× +

almascience.nao.ac.jp/ag/?result_view=observation&sourceName=HD16329

Projects (9)

Publications (60)

	ALMA source name	Ra	Dec	Band	Cont. sens.	Frequency support	↑ Release date	Publications	Ang. res.	Min. vel. res.	Array	Mosaic	Max. reco. scale	FOV	Scientific category	Science keywor
		h:m:s =	d:m:s -		mJy/beam -				arcsec -	km/s -			arcsec -	arcsec -		
6	HD163296	17:56:21.280	-21:57:22.441	6	0.0296	216.08233.99GHz	2015-09-12	7	0.379	0.091	12m		3.401	25.876	Disks and planet forma	Disks around lo
V	HD163296	17:56:21.281	-21:57:22.359	67	0.0615	216.15360.22GHz	2016-06-24	15	0.411	0.051	12m		6.319	25.821	Disks and planet forma	Disks around lo
5	HD163296	17:56:21.279	-21:57:22.476	7	0.0272	335.49351.46GHz	2017-02-05	0	0.281	53.309	12m		3.029	16.953	Disks and planet forma	Disks around h
5	HD163296	17:56:21.279	-21:57:22.515	6	0.0855	248.81266.00GHz	2017-09-02	15	0.404	0.159	12m		5.315	22.627	ISM and star formation	Astrochemistry
S	hd163296	17:56:21.284	-21:57:23.098	7	0.5839	288.87304.23GHz	2017-11-13	3	3.854	0.139	7m		29.282	33.663	Disks and planet forma	Disks around h
S	hd163296	17:56:21.284	-21:57:23.102	6	0.0629	223.47242.05GHz	2018-01-07	3	0.367	0.177	12m		4.185	25.019	Disks and planet forma	Disks around h
6	HD163296	17:56:21.278	-21:57:22.524	3	0.0164	90.21105.64GHz	2018-01-12	0	0.370	0.227	12m		9.055	59.465	Disks and planet forma	Disks around lo
6	HD163296	17:56:21.278	-21:57:22.520	7	0.0433	335.51351.49GHz	2018-03-02	3	0.142	53.609	12m		2.683	16.955	Disks and planet forma	Disks around lo
6	HD163296	17:56:21.278	-21:57:22.525	7	0.0454	319.86335.63GHz	2018-03-15	2	0.113	1.741	12m		2.099	17.767	Disks and planet forma	Disks around lo
S	hd163296	17:56:21.285	-21:57:23.115	6	0.0779	223.47242.05GHz	2018-03-22	3	1.219	0.177	12m		12.800	25.017	Disks and planet forma	Disks around h
S	hd163296	17:56:21.285	-21:57:23.118	7	0.0510	288.88304.23GHz	2018-04-27	3	0.570	0.139	12m		6.622	19.635	Disks and planet forma	Disks around h

ALMA Science Archive Preview per spw per target source per project

- Preview
 - A fixed set of images and spectra are produced from the cube.
 - Interactive view (HTML)
 - Static view (PNG)
- View a given product image cube with CARTA (embedded)

		~
nao.ac.jp/aq/?result_view=observation&sourceNa	ame=HD163296	Ů☆ 🖬 😩 :
LMA source name: HD163296		<mark>£</mark> 1 ≪ ≡
	17 56 21.277 -21 57 21 17 Molecules Lines	1 @ Observations 🛞 stimated) -
	and A001_X87c_X4ff.hd163296_sci.spw27.cube.l.pbcor.fits 11 MB continuum Band: 6 Frequency range: 223.97224.02 GHz Frequency resolution: 976.56 kHz Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.34 uJy/beam@10km/s Line sensitivity native (estimate): 0.34 uJy/beam@10km/s Array: 12m	Explore and download HCO+ v=0 4/3 13CO v=0 $3/2$ 13CO v=0 $3/2$ 14CO v=0
24.65224.77 GHz, 141.11kHz, XX YY	ember.uidtr_1_X87c_X4ff.hd163296_sci.spw29.cube.l.pbcor.fits 211 MB	
	Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.94 mJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY	250 GHz 300 GHz 350 GHz 9 10
	Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.94 mJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m	250 GHz 300 GHz 350 GHz 9 10 □ ⊕ 42 × \$
25.63225.75 GHz, 141.11kHz, XX YY	Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.94 mJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m ember.uidA00rc_X4ff.hd163296_sci.spw31.cube.l.pbcor.fits 211 MB	250 GHz 300 GHz 350 GHz 9 10 □ □ √2 × OV Scientific category Science keywor issec -
25.63225.75 GHz, 141.11kHz, XX YY	Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.94 mJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m ember.uidA001/c_X4ff.hd163296_sci.spw31.cube.l.pbcor.fits 211 MB line	250 GHz 300 GHz 350 GHz 9 10 □ □ √2 × OV Scientific category Science keywor issec ~ . . . 0.663 Disks and planet forma Disks around h 0.019 Disks and planet forma Disks around h
25.63225.75 GHz, 141.11kHz, XX YY The second sec	Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m mber.uidA004rc_X4ff.hd163296_sci.spw31.cube.l.pbcor.fits211 MB line line requency range: 225.63225.75 GHz Frequency resolution: 141.11 kHz Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.94 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.24 uJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.24 uJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.24 uJy/beam@native D.227 12m 9.055 59	250 CHz 300 CHz 350 CHz 9 10 Image: Science keywork Science keywork Sec =
25.63.225.75 GHz, 141.11kHz, XX YY The second seco	 Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.24 mJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m mber.uid_A000c_X4ff.hd163296_sci.spw31.cube.l.pbcor.fits 211 MB Ine Ine Ine Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity (estimate): 0.04 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.24 uJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m 	250 GHz 300 GHz 350 GHz 9 10 Image: Science keywor Science keywor Sec = Science keywor </td
	Continuum sensitivity (estimate): 0.94 mJy/beam@10km/s Line sensitivity native (estimate): 0.94 mJy/beam@native Polaritazions: XX YY Array: 12m res. Min. vel. res. Array Mosaic Max. reco. scale FO res. Min. v	250 GHz 300 GHz 350 GHz 9 10 Image: Science keywor Image: Science keywor Secc + Science keywor .627 ISM and star formation Astrochemistry .663 Disks and planet forma Disks around h .019 Disks and planet forma Disks around h .465 Disks and planet forma Disks around h .955 Disks and planet forma Disks around h .955 Disks and planet forma Disks around h .017 Disks and planet forma Disks around h
b hd163296 17:56:21.285 -21:57:23.118	Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.24 uJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m Image: Continuum sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m ember.uid_A001X4ff.hd163296_sci.spw31.cube.l.pbcor.fits 211 MB ine Ine Ine sensitivity 10km/s (estimate): 0.94 mJy/beam@n0km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polarit	250 GHz 300 GHz 350 GHz 9 10 Image: Science keywor Science keywor Sec + Science keywor Science keywor Science keywor
billion and a second se	Continuum sensitivity (estimate): 0.08 mJy/beam@10km/s Line sensitivity 10km/s (estimate): 0.94 mJy/beam@10km/s Line sensitivity native (estimate): 0.24 uJy/beam@native Polaritazions: XX YY Array: 12m 100 CHz 150 CHz 200 CHz ember.uidA00_rvc_X4ff.hd163296_sci.spw31.cube.l.pbcor.fits 211 MB ine arcsec -	250 GHz 300 GHz 350 GHz 9 10 Image: Science keywor Science keywor Sec + Science keywor Science keywor Science keywor
billion billio	Continuum sensitivity (estimate): 0.08 mJylbeam@10km/s Line sensitivity 10km/s (estimate): 0.24 mJylbeam@native Polaritazions: XX YY Array: 12m 150 Citz 200 Citz 100 Citz 200 Citz	250 GHz 300 GHz 350 GHz 9 10 Image: Science keywor Science keywor Sec + Scientific category Science keywor Sec + ISM and star formation Astrochemistry Sec + ISM and star formation Astrochemistry Sec + ISM and star formation Disks around h Sold Disks and planet forma Disks around h Sold Disks and planet forma.

ALMA Science Archive Preview per spw per target source per project

- Preview
 - Continuum image
 - Intensity maximum image
 - Moment 0 and 1 images of the strongest line identified by ADMIT
 - Spectra: continuum peak, cube moment 0 peak, integrated
 - ADMIT line ID labels

ALMA Science Archive Request Handler: view images and download data

- FITS images in the product folder can be visualized via CARTA remotely.
- View images with CARTA then decide if you need to download the data for detailed analysis offline.

● ● ● ■ ALMA Science Archive × ③	Alma Request Handler - Reque × +		ŕħ
ALMA Request Handler			
Anonymous User: Request #1415909373 Request Title: <u>click to edit</u>	3618 🗶		
Download Selected			
🗹 readme 🗹 product 🗹 auxiliary 🗀 raw 🗀 raw (sei Project / OUSet / Executionblock	Updated File	Size	Accessi
Request 1415909373618		30 GB	
Project 2016.1.00884.S			
Science Goal OUS uid://A001/X87c/X4fb			
Group OUS uid://A001/X87c/X4fc			
▼	2020-07-		
► SE bd163206 a 06 TM1	16		
	member uid A001 X87c X4fd README tyt	23 kB	<u> </u>
	2016 1 00884 S uid A001 X87c X4fd 001 of 001 ter	26 GB	
	2016 1 00884 S uid A001 X87c X4fd auxiliary tar	711 MB	
	2016.1.00884.S. uid A002. Xba839d X135.asdm.sdm.tar	39 GB	~
	2016.1.00884.S uid A002 Xbb44e1 X550a.asdm.sdm.tar	41 GB	 V
raw (semipass)	2016.1.00884.S uid A002 Xba6edb X563c.asdm.sdm.tar	41 GB	×
▼	2020-07-		
SB hd163296 a 06 TM2	10		
readme	member.uid A001 X87c X4ff.README.txt	21 kB	×
V V product	2016.1.00884.S uid A001 X87c X4ff 001 of 001.tar	2 GB	✓
product	member.uid A001 X87c X4ff.J1733-1304 ph.spw25.mfs.l.pb.fits.gz	71 kB	✓
D product	member.uid A001 X87c X4ff.J1733-1304 ph.spw25.mfs.l.pbcor.fits	210 kB	✓
🕞 📄 product	member.uid A001 X87c X4ff.J1733-1304 ph.spw27.mfs.l.pb.fits.gz	70 kB	✓
product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw27.mfs.l.pbcor.fits	210 kB	✓
🕞 🕒 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw29.mfs.l.pb.fits.gz	70 kB	✓
🕞 💾 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw29.mfs.l.pbcor.fits	210 kB	✓
📄 💾 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw31.mfs.l.pb.fits.gz	69 kB	✓
🕞 💾 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw31.mfs.l.pbcor.fits	210 kB	✓
🕞 💾 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw33.mfs.l.pb.fits.gz	69 kB	✓
🕞 📑 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw33.mfs.l.pbcor.fits	210 kB	✓
🕞 💾 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw35.mfs.l.pb.fits.gz	62 kB	✓
🕞 📄 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw35.mfs.l.pbcor.fits	210 kB	✓
🕞 📄 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw37.mfs.l.pb.fits.gz	62 kB	✓
product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw37.mfs.l.pbcor.fits	210 kB	✓
🕞 📑 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw39.mfs.l.pb.fits.gz	60 kB	✓
🕞 💾 product	member.uid A001_X87c_X4ff.J1733-1304_ph.spw39.mfs.l.pbcor.fits	210 kB	✓

ALMA Science Archiv Verifying your great ideas efficient

- Each click will bring up a new CARTA session with the image loaded as a new browser tab. (Note: your browser may block it)
- All the clicked images will be accessible via File -> Open image in CARTA.
- A read/write-able temporary folder (timeout 9h IIRC) is created to set up symbolic links of your selected images from the storage.

•••	🔬 ALMA So	cience Arc
$\leftarrow \ \ \rightarrow \ \ G$	🔒 carta	.almasci
File View	Widgets	Help
Open image	alt + O	:_X4ff.
Append image	e alt + L	-21:57
Save image	alt + S	
Close image	alt + W	
Import region	s	
Export region	S	
Import catalog	g alt + G	
Export image	alt + E	
Preferences		
Declin 40 35 30 25	5	23.0
		20.0
Render Config	juration ×	
90%	95%	99%

ve + CA Sently		v2.0	
hive 🗙 🕃 Alma Request Handler - Reque 🗙 🥃 C	CARTA × C CARTA	× +	
ence.nao.ac.jp/carta-frontend/?socketUrl=wss://carta.alma	ascience.nao.ac.jp/ophqjaxeei8s5agflq5rar	ww6&file=member.uidA001_X87c_X4ff.hd163296_sci.spw33.cu	be.l.pbcor.fits 🖞
	^° ♦ № № Η 🖌 ⊚		
hd163296_sci.spw33.cube.l.pbcor.fits :03.5); Image: (200, 229); NaN ; Frequency (LSRK): 22	6.7136 GHz; Velocity: -71.4289 km/s	X Profile: Cursor × 17:56:22.8 17:56:22.1 100e+0 9.00e-1 8.00e-1 6.00e-1	1.5 17:56:20.9
C D			
Filename member.uidA001_X87c_X4ff.hd163296_sci.spw33.cub member.uidA001_X87c_X4ff.hd163296_sci.spw29.cub	Image: Type Image: Size Image: Fite FITS 220.7 MB 12:38 FITS 220.7 MB 12:32	File Information Header	150
Q Filter by filename with fuzzy search		Select a file from the folder.	150
		Close	Load
0 0.05 Value (Jy/beam)	Clip Max 0.0762 Scaling Color map 0.1	2016272349 Linear ≑	

CARTA feature highlight Based on v3-beta2

Image rendering Rasters, contours, regions, and geodesic

Declination

Multi-panel view With or without image matching

Imag	ge List ×				*0
	Image	Layers	Matching	Channel	Polarization
0	spire250_ext.fits	R C	XYR	0	0
1	spire250_ext_GAL_imsub_refPxOffCentered.image	R C	XY R	0	0

	Image	Value	wcs	XY (World)	XY (Image)	z	Channel	Polarization
0	spire250_ext.fits	4.33871e+1 MJy/sr	FK5	7:10:45.9 -9:58:09	631.429 1359.750	NaN	0	0
1	spire250_ext_GAL_imsu	4.27357e+1 MJy/sr	FK5	7:10:45.9 -9:58:09	456.643 757.172	NaN	0	0

Spectral line analysis Multi-profile plot, smoothing and fitting

Anir	nator × Image List ×				<u>.</u>	• 0 ×
	Image	Layers	Matching	Channel	Polarization	
0	HD163296_CO_2_1.fits	RC	XYZR	88	Stokes I	
1	HD163296_13CO_2-1.fits	R	XY Z R	26	Stokes I	
2	HD163296_C180_2-1.fits	R	XY Z R	60	Stokes I	

Data: (5.770 km/s, 6.75e-2)

Moment map generator Visualization with multi-panel view

		Image		Layers	Matching	Channel
	0	HD163296_CO_2_1.fits		R	XYZR	88
	1	HD163296_CO_2_1.fits.momen	nt.integrated	R	XY R	0
÷	2	HD163296_CO_2_1.fits.momen	nt.weighted_coord	R	XY R	0
	3	HD163296_CO_2_1.fits.momer	nt.weighted_dispersion_coord	R	XY R	0
		7 Profile Settings: Rec	nion #1 (Active)			2 ×
		Conversion Stylin	ng Smoothing Moment	s Fitting		
0.6		Image (0: HD16)	Active \$			
		Region (Region 1)	Active 🜲			
.1 17:56:21.0 20.9		Coordinate	Radio velocity (km/s)	\$		
×		System	LSRK \$			
		Range (km/s)	From -45.34185 To	33.7063	10:	
is -						
		Mask	None 🖨			
- 1		Range (Jy/beam)	From 0 To	1	₽,	
		Moments	0 × 1 × 2 ×	×]	
0.7				C	Generate	

Position-velocity map generator Performance boosted

Spectral line ID Online Splatalogue query

Matching spectral lines in velocity space Rest frequency reconfiguration

Stokes analysis widget Visualization of a 3D+1 Stokes cube

Catalog visualization Marker-based rendering and online catalog query

ad.xml × 🛛 🕜 🖈 🗖	Catalo	g : m51_sii	mbad.xm							\$0	*
Y ANG_DIST 🖨	File	1 🖨 Sy	ଓ ୦	nline	Catalog G	uery				?	×
	N	Name	Datab	260							
	1 T	YPED_ID	Datab								
	2 A	NG DIST	SIME	BAD							
			Obiec	t							
	3 N	AAIN_ID		•		Des					
	4 C	DTYPE_S				Res	solve				
J. C.	5 R	RA_d	Searcl	n Radiu	JS						
	6 C	DEC_d	0.34	345098	3651030554	deg	•	Set to view	rer		
	7 0	COO_ERR_	Cente	r Coor	dinates						
	0	_	FK5	\$	13:29:52.16	453255	96	47:12:50.0	400892987	Ο	
9+1 4.73e+1 4.74e+1 4.74e+ DFC d	Ļ										
	С	lick to filte	Max N	umbei	r of Objects						
ected only Plot	27		1000			C					
	28										
	29										
Bins 50	30										
	22								Quer	Cancel	
	32										
	34			81	129997253417	97	[200	01 263	CI*		
	35			119	0.75		[1200	01 320	CI*		
	36			100	6.5299987792	9688	[L200	01 330	CI*		
	37			119	0.30999755859	375	[1200	01 335	CI*		
	38			190	0.6000061035	1562	[1200	01 368	CI*		
	39			97	80999755859	375	[1 200	01 395	CI*		+
	40			14	5 3099975585	9375	[1 200	01 409	CI*		—
	11			03	33999633780	062	[1 200	0] 416			+
	41			153	3 8800048828	125	[1200	0] 410			+
	42			10.	5.0000040020	125	[L200	0] 420	Ci		
				2423 en	tries						
	Showing	1 to 2423	of total								
.00e+2 6.00e+2	Showing	1 to 2423	ay 🖨	RA	ANG_DIS	D	EC	DEC_d 🗘	Max Rows	2423	C

Flexible and reusable GUI Different layouts can be saved for different purposes

	Statistics	s: Region 2 ×					
Region Region 2 Polarization Current	Image	1: m51_15 \$	Region	Region 2 🌲	Polarization	С	
	Statistic	Value					
0000e+5 pixel(s)	NumPixels	s 4.300000	000000e+1				
4054e+5 ELECTRONS	Sum	3.2093955	505488e+0)			
	FluxDensi	ity NaN					
9772e-1 ELECTRONS	Mean	7.4637104	77879e-2				
945e+0 ELECTRONS	StdDev	3.0140969	00109e-2				
5563e-1 ELECTRONS	Min						
9194e+1 ELECTRONS	Max 1.620779931545e-1						
9194e+1 ELECTRONS	Extrema	Extrema 1.620779931545e-1					
5296e+0 ELECTRONS	RMS	RMS 8.036198097284e-2					
789e+5 (ELECTRONS)^2	SumSq	2.776960633928e-1					
0□	Histogra	m: Region 2 🗙					
Region 1 Polarization Current	Image	0: h_m51_ 🖨	Region	Region 2 🖨	Polarizatior	1	
	1.00e+	4					

Obtaining CARTA

CARTA deployment modes UDM vs SDM

- User Deployment Mode (UDM)
 - Ideal for a single user with a local computer or a remote server
 - Supported OS: RHEL7/8, Ubuntu 18.04/20.04/22.04(up coming), and macOS Catalina, Big Sur, and Monterey

A common use case

STEP1: ssh to the remote server, then do > carta --no_browser

[2022-02-15 10:57:50.230] [CARTA] [info] CARTA is accessible at http:// localhost:3002/?token=10E3735B-3E42-43C1-A1E5-3B324885B0F6

STEP2: copy and paste the displayed URL to your *local* browser

NOTE: We do not recommend users to use CARTA via VNC as GPUaccelerated techniques may not work so that images may not be displayed properly or efficiently.

Check the controller user manual https://carta-controller.readthedocs.io/en/ latest/ Or contact support@carta.freshdesk.com for help

- Site Deployment Mode (SDM)
 - Ideal for institute-wide deployment to ulletsupport multiple users with a shared file system (note: there will be upcoming SDMonly collaborative tools)
 - Supported OS: RHEL7/8, Ubuntu lacksquare18.04/20.04/22.04(up coming)

Check https://cartavis.org v2.0 and v3.0-beta2 are available

- UDM installation
 - Package managers (yum, apt, brew)
 - Linux AppImage
 - macOS dmg

INSTALLATION

Obtaining CARTA

v2.0

Supported operating systems:

- Ubuntu Linux: 18.04 LTS (Bionic Beaver), 20.04 LTS (Focal Fossa)
- Red Hat Enterprise Linux: 7, 8
- macOS: 10.15 (Catalina), 11 (Big Sur)

For more information, please refer to the user manual.

In case of any issues encountered during the installation, please contact the CARTA helpdesk.

To obtain previous release versions, please refer to https://github.com/CARTAvis/carta/releases.

v3.0-beta.2b

Supported operating systems:

- Ubuntu Linux: 18.04 LTS (Bionic Beaver), 20.04 LTS (Focal Fossa)
- Red Hat Enterprise Linux: 7, 8
- macOS: 10.15 (Catalina), 11 (Big Sur), 12 (Monterey)

Online information CARTA info

- Homepage • https://cartavis.org
- User manual https://carta.readthedocs.io/en/latest
- Controller user manual (for site deployment) https://cartacontroller.readthedocs.io/en/latest/
- Helpdesk Email to support@carta.freshdesk.com
- Codebase https://github.com/CARTAvis

Thank you~ We hope CARTA can make your life easier 😃

https://cartavis.org

INSTALLATION . TEAM HOME FEATURES GALLERY ROADMAP ABOUT CARTA Cube Analysis and Rendering Tool for Astronomy, is a next generation image visualization and analysis tool designed for ALMA, VLA, and SKA pathfinders. **User Manual** Installation

