Estimation of expected intensity

Hyeong-Sik Yun The ALMA Proposal Preparation Workshop

Estimating the expected intensity

ALMA Observing Tool (Cycle 11 (Phase1)) - Project						- O ×		
File Edit View Tool Search Help							Perspective 1	
1 D 🗉 🖻 🗛 🗄 🗛 🕘 🐺 🗑 🖻		2						
Project Structure	< Editors							
Proposal Program	> Spectral Spatial Control a	and Perf	ormance					
Insubmitted Proposal	These parameters are used to co	ontrol var	rious aspects of the observ	ations, inclu	uding the required ant	enna configurations and integratio	n times.	
Example Proposal Englishing	- Configuration Information	Configuration Information						
 We planted observing We can we estimate the experimentation of the state of the sta	Antenna Beamsize (1.13 * λ / D)	12m	0.000 arcsec	7m	0.000 arcsec		L.J.	
 General Field Setup 	Number of Antennas	12m	43	7m 10		TP 3		
Spectral Setup Calibration Setup		ACA 7n	n configuration Mo	st compact	12m configuration M	Nost extended 12m configuration		
Control and Performance	Longest baseline	0.049 km		0.161 km		16.197 km		
lechnical Justification	Synthesized beamsize	0.000 arcsec 0.009 km 0.000 arcsec		0.000 arcsec 0.000 ar 0.015 km 0.256 kn 0.000 arcsec 0.000 ar		0.000 arcsec]	
	Shortest baseline					0.256 km		
	Maximum recoverable scale					0.000 arcsec]	
	Desired Performance Desired Angular Resolution (S Largest Angular Structure in so Desired sensitivity per pointing	Synthesiz ource g	zed Beam) Single (0.5 5.0 ??	Range arc	Any Standalone A sec v to 0.1 sec v equivalent	ACA	3	
	Bandwidth used for Sensitivity- Override OT's sensitivity-based time estimate (must be justifie Science Goal Breakdown: time estimate, clustering, bear Simultaneous 12-m and ACA of Are the observations time-com	d ed) m and co observat strained	RepWindow Yes N Onfigurations Planning a 1000 Yes N 2 Yes N	m Jy Effective M K o nd Time Es o o	Jy and K h v Fre	equency Width 0.000000 GHz		

 Need to specify a desired rms noise level in our ALMA proposals

Estimating the expected intensity

	ALMA Observing Tool (Cycle 11 (Phase1)) - Example	- •	×
File Edit View Tool Search Help		Perspect	ive 1
1 D 🗉 🗗 🖓 🗄 🐼 🔘 🛎 🔯 🖻 🗉	E B 🛇 🗹 K 🛛 🕯 🖓		
Project Structure	Editors		
Proposal Program	Spectral Spatial Technical Justification		
Unsubmitted Proposal	Enter a Technical Justification for this Science Goal, paving special attention to the parameters reproduced below		
Example			
Proposal	Sensitivity		
 ScienceGoal (How can we estimate the expect General 	Requested RMS over 531.311 m/s is 1.00 mJy For a peak flux density of 1.00 Jy, the S/N is 1000.0		٦
Field Setup	The proposed observations exceed the nominal limits for the Continuum imaging Dynamic Range for at least one source		
Calibration Setup	Achieved RMS over the total 234.375 MHz bandwidth is 28.79 uJy, 2.90 mK-11.60 mK For a continuum flux density of 1.00 Jy, 100.67 K-402.69 K	, the achieved	1 S/
Control and Performance	For a peak line flux of 1.00 Jy, the achieved S/N over 1/3 of the source line width (2.00 km/s/3 = 666.67 m/s) is 1123.1		
Technical Justification	The proposed observations exceed the nominal limits for the Line Imaging Dynamic Range for at least one source		
	Line width / bandwidth used for sensitivity (2.00 km/s / 531.31 m/s) = 3.76		
	Spectral Dynamic Range (continuum flux / line rms): 1002.62		
	Note that the dynamic range is higher than that offered for the chosen band in this cycle. Please double-check your input and/or address the issue below.		
	The proposed observations exceed the nominal limits for the Spectral Dynamic Range for at least one source		
	Justify your requested RMS and resulting S/N for the spectral line and/or continuum observations.		
	For line observations also justify the bandwidth used for the sensitivity calculation.		

 Need to specify a desired rms noise level in our ALMA proposals

 All parameters should be explained with acceptable reasoning processes.

How can we estimate the expected intensities?

- 1. From an archival data for a similar target
- 2. From data with poorer angular resolutions
- 3. From data in different frequency ranges
- 4. From a model

✓You might need combine some of them to derive your expected intensities

✓Keeping a plausibility laid out a logical basis is the most important thing.

From an archival data for a similar target

- Aim to observe the source that did not observed at a given frequency previously
- Find a source which has physical properties similar with those of your target from the ALMA archive
- Adopt the measured intensities as expected intensities for a given angular resolutions.

From an archival data for a similar target

- Example : Class 0 protostar L1455 IRS4
- T_{bol} = 60 K, L_{bol} = 1.7 $L_{\odot},~M_{env}$ = 0.5 M_{\odot}
- Aim: study of outflowing gas near L1455 IRS4.

ID	c2d Name/Position	T _{bol}	$L_{\rm bol}$	$\alpha_{\rm IR}$	Menv	Bolocam ID	Other Names		
	(SSTc2dJ)	(K)	(L_{\odot})		(M_{\odot})				
	Class 0								
Per-emb 20	J032743.23+301228.8	60 (14)	1.7 (0.01)	2.39 (0.06)	0.5 (0.03)	Bolo 23	L1455-IRS 4		
Per-emb 22	J032522.33+304514.0	63 (11)	1.7 (1.1)	2.34 (0.07)	1.41 (0.14)	Bolo 5	L 1448-IRS2		
Enoch et al.	(2009)								

 Table 2

 Bolometric Temperatures, Luminosities, and Envelope Masses of Embedded Protostars in Perseus

From an archival data for a similar target

- Example : Class 0 protostar NGC1333 IRS 4A (L1448 IRS2)
- Embedded Class 0 protostar
- In the Perseus cloud
- Well developed outflows are detected in CO and SO with a 0."65x0."35 beam

Chuang et al. (2021)

			F				
ID	c2d Name/Position	$T_{\rm bol}$	$L_{ m bol}$	$\alpha_{\rm IR}$	Menv	Bolocam ID	Other Names
	(SSTc2dJ)	(K)	(L_{\odot})		(M_{\odot})		
			Cla	ass 0			
Per-emb 20	J032743.23+301228.8	60 (14)	1.7 (0.01)	2.39 (0.06)	0.5 (0.03)	Bolo 23	L1455-IRS 4
Per-emb 22	J032522.33+304514.0	63 (11)	1.7 (1.1)	2.34 (0.07)	1.41 (0.14)	Bolo 5	L 1448-IRS2
Enoch et al.	(2009)						

 Table 2

 Bolometric Temperatures, Luminosities, and Envelope Masses of Embedded Protostars in Perseus

From an archival data for a sim target

- Example : Class 0 protostar NGC1333 IRS 4A (L1448 IRS2)
- Embedded Class 0 protostar
- In the Perseus cloud
- Well developed outflows are detected in SO with a 0."65x0."35 beam

 Table 2

 Bolometric Temperatures, Luminosities, and Envelope Masses of Embedded Protostars in Perseus

ID	c2d Name/Position	$T_{\rm bol}$	$L_{\rm bol}$	$\alpha_{\rm IR}$	Menv	Bolocam ID	Other Names
	(SSTc2dJ)	(K)	(L_{\odot})		(M_{\odot})		
			Cla	ass 0			
Per-emb 20	J032743.23+301228.8	60 (14)	1.7 (0.01)	2.39 (0.06)	0.5 (0.03)	Bolo 23	L1455-IRS 4
Per-emb 22	J032522.33+304514.0	63 (11)	1.7 (1.1)	2.34 (0.07)	1.41 (0.14)	Bolo 5	L 1448-IRS2
Enoch et al.	(2009)						

From a previous observation (with a poorer resolution)

- When you have a data with a poorer angular resolution (Ω_p)
- Aim to resolve a specific structure with a higher angular resolution (Ω_{b})
- You can scale the observed intensity (in K unit) by multiplying a correction factor of,

$$f = \frac{\Omega_b}{\Omega_p}$$

From a previous observation (with a poorer resolution)

- Example : The disk of a 10 Myr old K6 star, TW Hya
- Continuum image at 372 GHz (used in the CASA tutorial of ALMA)

• Beam size = $\sim 0."5$

• Aim to resolve detailed structure with higher angular resolution of ~ 0."02

$$f = \frac{\Omega_b}{\Omega_p} = 0.0016$$

Caution!

When you star from the single-dish observation, a large gap between Ω_p and Ω_b will results in undetectable expected intensities.

From a previous observation (with a poorer resolution)

- Example : The disk of a 10 Myr old K6 star, TW Hya
- Continuum image at 372 GHz (used in the CASA tutorial of ALMA)

From data in different frequency ranges

For a continuum observation,

- Continuum flux is proportional with κT (κ =dust absorption coefficient, T=temperature)
- Typically, κ follows a power-law relation of ,

$$\kappa \propto \kappa_0 (\nu/\nu_0)^\beta$$

• Adopt β from literature

From data in different frequency ranges

$$\kappa \propto \kappa_0 (\nu/\nu_0)^{\beta}$$

Search acceptable β from the literature Continuum image at 104 GHz With a beam size of ~0."05

From data in different frequency ranges For a line observation,

- Multiple transition lines would be observed in different frequency regimes.
- Adopt their intensity ratios and compare it with the model spectra
- Possible models : LTE codes (XCLASS, MADCUBA, CASSIS, ...) RADEX on-line (<u>Radex on-line: Main Page</u>)

Spectral scan observation toward a protostar BHR 71 IRS1

From data in different frequency ranges For a line observation,

- Multiple transition lines would be observed in different frequency regimes.
- Adopt their intensity ratios and compare it with the model spectra
- Possible models : LTE codes (XCLASS, MADCUBA, CASSIS, ...) RADEX on-line (<u>Radex on-line: Main Page</u>)

Spectral scan observation toward a protostar BHR 71 IRS1

RADEX on-line

- On-line tool.
- Easy to calculate the line intensity ratios

RADEX

Non-LTE molecular radiative transfer in an isothermal homogeneous medium

This program is free to use for everybody, provided that publications make a reference to our paper: Van der Tak, F.F.S., Black, J.H., Schöier, F.L., Jansen, D.J., van Dishoeck, E.F., 2007, A&A 468, 627-635.

Molecule / Data file CO 🗸	
Spectral Range Minimum frequency (GHz) 50	
Maximum frequency (GHz) 500	
Excitation Conditions	
Background temperature (K) 2.73	
Kinetic temperature (K) 30	
H ₂ density (cm ⁻³) 1e4	- the LTE condition
Radiative Transfer Parameters	
Column density (cm ⁻²) 1e14	
Line width (km s ⁻¹) 1.0	
Get Line Intensities	

If you want to run more extensive calculations, please use the <u>offline version</u> of RADEX. Click <u>here</u> for the 18-page manual in PDF Send comments / questions to <u>Floris van der Tak</u> (vdtak @ sron.nl) Program version: December 2011 Datafile version: January 2016

RADEX on-line

- On-line tool.
- Easy to calculate the line intensity ratios
- Adopt the modeled intensities and derive their ratios.

Radex on-line: Results

Molecule:	CO	
Minimum frequency:	50	GHz
Maximum frequency:	500	GHz
Kinetic temperature:	30	K
Background temperature:	2.73	K
Number density:	1e10	cm ⁻³
Column density:	1e14	cm ⁻²
Line width:	1.0	km s ⁻¹

arning: Ortho-para ratio out of valid range (0-3)								
	Trar	nsit	<u>ion</u>	Frequency	T _{ex}	<u>tau</u>	<u>T</u> R	
				(GHz)	(K)		(K)	
	1		0	115.2712	30.000	2.139E-03	5.658E-02	
	2		1	230.5380	30.000	6.512E-03	1.597E-01	
	3		2	345.7960	30.000	9.300E-03	2.076E-01	
	4		3	461.0408	30.000	8.741E-03	1.765E-01	

Send comments / questions to Floris van der Tak (vdtak @ sron.nl)

From a model spectra

- The most hardest way to estimate an expected intensity
- Fully model-based estimation.
- Adopt estimated physical and chemical structure of targets.
- Solve radiative transfer for a given physical and chemical structures and get the model spectra.